Article

Hydrobiologia

, Volume 389, Issue 1, pp 153-167

First online:

Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments

  • Ross A. SutherlandAffiliated withGeomorphology Laboratory, Department of Geography, University of Hawaii

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Fluvial bed sediments represent an important sink and source for a variety of organic and inorganic compounds. Their most important constituent is organic matter (OM) and its primary component organic carbon (OC). Few studies have been conducted in fluvial environments examining bed-associated OM or OC. This is surprising given the recent interest in global carbon cycling and the importance of bed-associated organics as ecosystem energy sources. The objective of this study was to examine the relationship between OM, determined by loss-on-ignition (LOI), and OC in fluvial bed sediments determined by a dry combustion analyzer. The wide adoption of the LOI method in soil science reflects its ease of use, it is inexpensive, it is rapid, requires no specialized training, and strong statistical relationships commonly exist between OM and OC estimated by standard dry combustion procedures. Regression models were developed between OC and OM for six bed sediment size fractions (≤2.0 mm) for 113 sample sites in a tropical stream on Oahu, Hawaii. All models were highly significant (p < 0.0001), with coefficients of determination ranging from 35 to 79%. Measurement of LOI explained 64% of the variation in OC for all grouped data. The black-box LOI approach may be useful for rapid reconnaissance surveys of drainage systems. Examination of OM to OC conversion factors for Manoa bed sediments indicates that values typically observed in the soils literature (1.7–2.2) are far too low. Values of OM/OC were found to increase with increasing grain size, and decrease with increasing LOI percentage. Conversion factors obtained for grouped data had a mean of 14.9, a coefficient of variation of 21%, and a range of values between 6.2 and 27.4. It is suggested that these high conversion factors reflect significant water loss by dehydration of Fe, Al, and Mn oxides at a muffle furnace temperature of 450 °C. Therefore, the blind application of conversion factors developed from soils should be avoided when converting from OM to OC for fluvial bed sediments.

tropical stream organic matter organic carbon conversion factors grain size partitioning Hawaii