, Volume 95, Issue 1, pp 15-34

Comparison of guinea pig electroretinograms measured with bipolar corneal and unipolar intravitreal electrodes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This study considers the precision and accuracy of bipolar corneal electrodes compared with unipolar intravitreal methods in collecting electroretinographic (ERG) recordings from a small animal. Flash ERGs were obtained from 9 adult guinea pigs on three occasions. Corneal bipolar (Burian-Allen) electrodes were used to collect data on the first two occasions whereas unipolar intravitreal electrodes were used on the last. We identified the a-wave, b-wave, oscillatory potentials, PIII and PII responses. Intensity-response functions were fit using a Naka-Rushton relationship with a bootstrap estimating the 95% confidence limits. Discrepancy analysis was applied to determine the coefficient of agreement. We found significantly larger amplitudes with unipolar intravitreal electrodes (ANOVA; a-wave, p<0.002; b-wave, p<0.001; Oscillatory potentials (OPs), p<0.005) especially at high intensities. Implicit times showed little differences between electrodes for the a-wave, significantly faster (p<0.03) b-waves at some intensities, and significantly slower (p<0.005) OP implicit times across all intensities. The PIII amplitude (log μV), sensitivity and timing were not significantly different (p>0.05) if expressed in logarithmic units but PII amplitude (log μV) was significantly smaller with corneal electrodes. We suggest that a conversion factor (x1.35) should be applied to data collected with bipolar corneal electrodes to estimate the amplitudes of the modelled parameters accurately. The corneal electrode gave a precision of ± 39 μV which yields a statistical power of 0.90 for a sample size of 7 subjects. We conclude that bipolar corneal electrodes provide smaller electroretinogram amplitudes due to their location and reduced span of the retinal generators.

This revised version was published online in July 2006 with corrections to the Cover Date.