Skip to main content
Log in

Area-Based Medial Axis of Planar Curves

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A new definition of affine invariant medial axis of planar closed curves is introduced. A point belongs to the affine medial axis if and only if it is equidistant from at least two points of the curve, with the distance being a minimum and given by the areas between the curve and its corresponding chords. The medial axis is robust, eliminating the need for curve denoising. In a dynamical interpretation of this affine medial axis, the medial axis points are the affine shock positions of the affine erosion of the curve. We propose a simple method to compute the medial axis and give examples. We also demonstrate how to use this method to detect affine skew symmetry in real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • August, J., Tannenbaum, A., and Zucker, S.W. 1999. On the evolution of the skeleton. In Proceedings of the International Conference on Computer Vision, IEEE, vol. 1, pp. 315–322.

    Google Scholar 

  • Betelu, S., Sapiro, G., and Tannenbaum, A. 2001a. Affine invariant erosion of 3D shapes. In Proceedings of the International Conference on Computer Vision, IEEE, vol. 2, pp. 174–180.

    Article  Google Scholar 

  • Betelu, S., Sapiro, G., Tannenbaum, A., and Giblin, P. 2001b. On the computation of affine skeletons of planar curves and the detection of skew symmetry. Pattern Recognition, 34:943–952.

    Article  Google Scholar 

  • Blum, H. 1967. Models for the Perception of Speech and Visual Form, chapter A Transformation for Extracting New Descriptors of Shape, MIT Press, pp. 362–380.

  • Blum, H. 1973. Biological shape and visual science. Journal of Theoretical Biology, 38:205–287.

    Google Scholar 

  • Brady, J.M. and Asada, H. 1984. Smoothed local symmetries and their implementation. International Journal of Robotics Research, 3:36–61.

    Google Scholar 

  • Brooks, R.A. 1981. Symbolic reasoning among 3D models and 2D images. Artifical Intelligence, 17:285–348.

    Google Scholar 

  • Bruce, J.W. and Giblin, P.J. 1986. Growth, motion and one-parameter families of symmetry sets. In Proceedings of the Royal Society of Edinburgh, vol. 104A, pp. 179–204.

    Google Scholar 

  • Bruce, J.W. and Giblin, P.J. 1992. Curves and Singularities. 2nd edition. Cambridge University Press.

  • Bruce, J.W., Giblin, P.J., and Gibson, C.G. 1985. Symmetry sets. In Proceedings of the Royal Society of Edinburgh, vol. 101A, pp. 163–186.

    Google Scholar 

  • Calabi, L. and Hartnett, W.E. 1968. Shape recognition, prarie fires, convex deficiencies and skeletons. The American Mathematical Monthly, 75(4):335–342.

    Google Scholar 

  • Caselles, V., Kimmel, R., and Sapiro, G. 1997. On geodesic active contours. International Journal of Computer Vision, 22(1):61–79.

    Article  Google Scholar 

  • Cham, T.J. and Cipolla, R. 1995. Symmetry detection trough local skewed symmetries. Image and Vision Computing, 13:439–450.

    Article  Google Scholar 

  • Giblin, P.J. and Kimia, B.B. 1999. On the local form and transitions of symmetry sets, and medial axes, and shocks in 2D. In Proceedings of the International Conference on Computer Vision, IEEE, pp. 385–391.

  • Giblin, P. and Sapiro, G. 1998a. Affine invariant symmetry sets and skew symmetry. In Proceedings of the International Conference on Computer Vision.

  • Giblin, P.J. and Sapiro, G. 1998b. Affine invariant distances, envelopes and symmetry sets. Geometriae Dedicata, 71:237–261.

    Article  Google Scholar 

  • Giblin, P.J. and Sapiro, G. 2000. Real and Complex Singularities, vol. 412 of Research Notes in Mathematics, chapter Affine Versions of the Symmetry Set. Chapman and Hall/CRC, pp. 173–187.

    Google Scholar 

  • Van Gool, L., Moons, T., and Proesmans, M. 1996. Mirror and point symmetry under perspective skewing. In Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 285–292.

  • Van Gool, L., Moons, T., Ungureanu, D., and Oosterlinck, A. 1985. The characterization and detection of skewed symmetry. Computer Vision and Image Understanding, 61:138–150.

    Article  Google Scholar 

  • Holtom, P. 2000. Affine-invariant symmetry sets. PhD thesis, Liverpool University.

  • Jain, R., Kasturi, R.R., and Schunck, B. 1995. Machine Vision. Mc-Graw Hill.

  • Klee, V.L. Jr., 1949. A characterisation of convex sets. The American Mathematical Monthly, 56(4):247–249.

    Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models, International Journal of Computer Vision, 321–331

  • Katz, R.A. and Pizer, S.M. 2002. Untangling the Blum medial axis transform. International Journal of Computer Vision (submitted).

  • Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A. 1996. Conformal curvature flows: from phase transitions to active vision. Archive for Rational Mechanics and Analysis, 134:275–301.

    Google Scholar 

  • Kimia, B.B. and Leymarie, F.F. 2001. Symmetry-based representations of 3D data. In Proceedings of the International Conference on Image Processing, IEEE, pp. 581–584.

  • Kovács, I. and Julesz, B. 1994. Perceptual sensitivity maps within globally defined visual shapes. Nature, 370:644–646.

    Article  Google Scholar 

  • Lam, L., Lee, S.-W., and Suen, C.Y. 1992. Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9):869–885.

    Article  Google Scholar 

  • Lee, S.-W., Lam, L., and Suen, C.Y. 1993. A systematic evaluation of skeletonization algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 7(5):1203–1225.

    Google Scholar 

  • Lee, T.S., Mumford, D., Zipser, K., and Schiller, P. 1995. Neural correlates of boundary and medial axis representation in primate striate cortex. Investigative Opthalmology and Visual Science Supplement (ARVO Abstract).

  • Leymarie, F. and Levine, M.D. 1992. Simulating the grassfire transform using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):56–75.

    Article  Google Scholar 

  • Leyton, M. 1992. Symmetry, Causality, Mind. MIT Press.

  • Meyer, F. 1990. Digital Euclidean skeletons. In Visual Communications and Image Processing '90, vol. SPIE-1360, Society of Photo-Instrumentation Engineers, pp. 251–262.

    Google Scholar 

  • Moisan, L. 1998. Affine plane curve evolution: A fully consistent scheme. IEEE Transactions on Image Processing, 7:411–420.

    Article  Google Scholar 

  • Mott-Smith, J.C. 1970. Picture Processing and Psychopictorics, chapter Medial Axis Transformations. Academic Press, pp. 267–278.

  • Motzkin, T.S. 1983a. Sur quelques propriétés charactéristiques des ensembles bornés non convexes. In Selected Papers, Theodore S. Motzkin (ed.), Birkhäuser, pp. 138–143.

  • Motzkin, T.S. 1983b. FrSur quelques propriétés charactéristiques des ensembles convexes. In Theodore S. Motzkin (ed.), Selected Papers, Birkhäuser, pp. 138–143.

  • Niblack, C.W., Capson, D.W., and Gibbons, P.B. 1990. Generating skeletons and centerlines from the medial axis transform. In Proceedings of the International Conference on Pattern Recognition, vol. 1, IEEE, pp. 881–885.

    Google Scholar 

  • Ogniewicz, R. and Ilg, M. 1992. Voronoi skeletons: Theory and applications. In Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 63–69.

  • Ogniewicz, R.L. 1993. Discrete Voronoi Skeletons. Hartung-Gorre Verlag.

  • Phelps, R.R. 1957. Convex sets and nearest points. In Proceedings of the American Mathematical Society, vol. 8, pp. 790–797.

    Google Scholar 

  • Pizer, S.M., Eberly, D., and Fritsch, D.S. 1998. Zoom-invariant vision of figural shape: The mathematics of cores. Computer Vision and Image Understanding, 69(1):55–71.

    Article  Google Scholar 

  • Ponce, J. 1989. On characterizing ribbons and finding skewed symmetries. In Proceedings of the International Conference on Robotics and Automation, pp. 49–54.

  • Preparata, F.P. and Shamos, M.I. 1990. Computational Geometry. Texts and Monographs in Computer Science. Springer Verlag.

  • Pudney, C. 1998. Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Computer Vision and Image Understanding, 72(3):404–413.

    Article  Google Scholar 

  • Ranwez, V. and Soille, P. 2002. Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters, 23:687–702.

    Article  Google Scholar 

  • Serra, J. 1982. Image Analysis and Mathematical Morphology, vol. 1. Academic Press.

  • Serra, J. 1988. Image Analysis and Mathematical Morphology, vol. 2. Academic Press.

  • Shaked, D. 1996. Symmetry, invariance, and evolution in planar shape analysis. PhD thesis, Technion.

  • Smoller, J. 1983. Shock Waves and Reaction-Diffusion Equations. Springer Verlag.

  • Svensson, S., Borgefors, G., and Nyström, I. 1999. On reversible skeletonization using anchor-points from distance transforms. Journal of Visual Communication and Image Representation, 10:379–397.

    Article  Google Scholar 

  • Verwer, B.J.H., van Vliet, L.J., and Verbeek, P.W. 1993. Binary and grey-value skeletons: Metrics and algorithms. International Journal of Pattern Recognition and Artifical Intelligence, 7(5):1287–1308.

    Google Scholar 

  • Wang, S., Rosenfeld, A., and Wu, A.Y. 1982. A medial axis transformation for grayscale pictures. IEEE Transcations of Pattern Analysis and Machine Intelligence, 4(4):419–421.

    Google Scholar 

  • Wright, M.W., Cipolla, R., and Giblin, P.J. 1995. Skeletonization using an extended Euclidean distance transform. Image and Vision Computing, 13(5):367–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niethammer, M., Betelu, S., Sapiro, G. et al. Area-Based Medial Axis of Planar Curves. International Journal of Computer Vision 60, 203–224 (2004). https://doi.org/10.1023/B:VISI.0000036835.28674.d0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VISI.0000036835.28674.d0

Navigation