Skip to main content
Log in

Endothelial Dysfunction, Inflammation and Diabetes

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med 1996;47:315-331.

    Google Scholar 

  2. Gerritsen ME. Functional heterogeneity of vascular endothelial cells. Biochem Pharmacol 1987;36:2701-2711.

    Google Scholar 

  3. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;100:2153-2157.

    Google Scholar 

  4. Griendling KK, Alexander RW. Endothelial control of the cardiovascular system: Recent advances. Faseb J 1996;10:283-292.

    Google Scholar 

  5. Ross R. Atherosclerosis—An inflammatory disease. N Engl J Med 1999;340:115-126.

    Google Scholar 

  6. Repo H, Harlan JM. Mechanisms and consequences of phagocyte adhesion to endothelium. Ann Med 1999;31:156-165.

    Google Scholar 

  7. Nicosia S, Oliva D, Bernini F, Fumagalli R. Prostacyclin-sensitive adenylate cyclase and prostacyclin binding sites in platelets and smooth muscle cells. Adv Cyclic Nucleotide Protein Phosphorylation Res 1984;17:593-599.

    Google Scholar 

  8. Rovati GE, Giovanazzi S, Negretti A, Nicosia S. Prostacyclin effects on adenylate cyclase in platelets and vascular smooth muscle: Interaction with an inhibitory receptor or partial agonism? Adv Prostaglandin Thromboxane Leukot Res 1995;23:263-265.

    Google Scholar 

  9. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-376.

    Google Scholar 

  10. Barrett ML, Willis AL, Vane JR. Inhibition of platelet-derived mitogen release by nitric oxide (EDRF). Agents Actions 1989;27:488-491.

    Google Scholar 

  11. Grodzinska L, Marcinkiewicz E. The generation of TXA2 in human platelet rich plasma and its inhibition by nictindole and prostacyclin. Pharmacol Res Commun 1979;11:133-146.

    Google Scholar 

  12. Boyko EJ, Ahroni JH, Stensel VL. Tissue oxygenation and skin blood flow in the diabetic foot: Responses to cutaneous warming. Foot Ankle Int 2001;22:711-714.

    Google Scholar 

  13. Chin LC, Huang TY, Yu CL, Wu CH, Hsu CC, Yu HS. Increased cutaneous blood flow but impaired post-ischemic response of nutritional flow in obese children. Atherosclerosis 1999;146:179-185.

    Google Scholar 

  14. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, King GL, LoGerfo FW, Horton ES, Veves A. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 1999;48:1856-1862.

    Google Scholar 

  15. Griffith DN, Saimbi S, Lewis C, Tolfree S, Betteridge DJ. Abnormal cerebrovascular carbon dioxide reactivity in people with diabetes. Diabet Med 1987;4:217-220.

    Google Scholar 

  16. Dandona P, James IM, Newbury PA, Woollard ML, Beckett AG. Cerebral blood flow in diabetes mellitus: Evidence of abnormal cerebrovascular reactivity. Br Med J 1978;2:325-326.

    Google Scholar 

  17. Menon RK, Grace AA, Burgoyne W, Fonseca VA, James IM, Dandona P. Muscle blood flow in diabetes mellitus. Evidence of abnormality after exercise. Diabetes Care 1992;15:693-695.

    Google Scholar 

  18. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88:2510-2516.

    Google Scholar 

  19. Riddell DR, Owen JS. Nitric oxide and platelet aggregation. Vitam Horm 1999;57:25-48.

    Google Scholar 

  20. Trovati M, Anfossi G. Influence of insulin and of insulin resistance on platelet and vascular smooth muscle cell function. J Diabetes Complications 2002;16:35-40.

    Google Scholar 

  21. van 't Veer C, Golden NJ, Kalafatis M, Mann KG. Inhibitory mechanism of the protein C pathway on tissue factor-induced thrombin generation. Synergistic effect in combination with tissue factor pathway inhibitor. J Biol Chem 1997;272:7983-7994.

    Google Scholar 

  22. Podor TJ, Joshua P, Butcher M, Seiffert D, Loskutoff D, Gauldie J. Accumulation of type 1 plasminogen activator inhibitor and vitronectin at sites of cellular necrosis and inflammation. Ann NY Acad Sci 1992;667:173-177.

    Google Scholar 

  23. Carmassi F, Morale M, Puccetti R, De Negri F, Monzani F, Navalesi R, Mariani G. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus. Thromb Res 1992;67:643-654.

    Google Scholar 

  24. McGill JB, Schneider DJ, Arfken CL, Lucore CL, Sobel BE. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 1994;43:104-109.

    Google Scholar 

  25. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 1993;259:87-91.

    Google Scholar 

  26. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995;95:2111-2119.

    Google Scholar 

  27. Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: Fall with weight loss. J Clin Endocrinol Metab 1998;83:2907-2910.

    Google Scholar 

  28. Mantzoros CS, Moschos S, Avramopoulos I, Kaklamani V, Liolios A, Doulgerakis DE, Griveas I, Katsilambros N, Flier JS. Leptin concentrations in relation to body mass index and the tumor necrosis factor-alpha system in humans. J Clin Endocrinol Metab 1997;82:3408-3413.

    Google Scholar 

  29. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999;19:972-978.

    Google Scholar 

  30. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997;82:4196-4200.

    Google Scholar 

  31. Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 1996;93:106-110.

    Google Scholar 

  32. Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996;45:881-885.

    Google Scholar 

  33. Crook MA, Tutt P, Pickup JC. Elevated serum sialic acid concentration in NIDDM and its relationship to blood pressure and retinopathy. Diabetes Care 1993;16:57-60.

    Google Scholar 

  34. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997;40:1286-1292.

    Google Scholar 

  35. Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): A cohort study. Lancet 1999;353:1649-1652.

    Google Scholar 

  36. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G. Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 2003;52:1799-1805.

    Google Scholar 

  37. Duncan BB, Schmidt MI, Chambless LE, Folsom AR, Carpenter M, Heiss G. Fibrinogen, other putative markers of inflammation, and weight gain in middle-aged adults—the ARIC study. Atherosclerosis Risk in Communities. Obes Res 2000;8:279-286.

    Google Scholar 

  38. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama 2001;286:327-334.

    Google Scholar 

  39. Barzilay JI, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, Tracy RP. The relation of markers of inflammation to the development of glucose disorders in the elderly: The Cardiovascular Health Study. Diabetes 2001;50:2384-2389.

    Google Scholar 

  40. Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care 2002;25:2016-2021.

    Google Scholar 

  41. Pradhan AD, Cook NR, Buring JE, Manson JE, Ridker PM. C-reactive protein is independently associated with fasting insulin in nondiabetic women. Arterioscler Thromb Vasc Biol 2003;23:650-655.

    Google Scholar 

  42. Hak AE, Stehouwer CD, Bots ML, Polderman KH, Schalkwijk CG, Westendorp IC, Hofman A, Witteman JC. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler Thromb Vasc Biol 1999;19:1986-1991.

    Google Scholar 

  43. Lemieux I, Pascot A, Prud'homme D, Almeras N, Bogaty P, Nadeau A, Bergeron J, Despres JP. Elevated C-reactive protein. another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001;21:961-967.

    Google Scholar 

  44. Kubaszek A, Pihlajamaki J, Komarovski V, Lindi V, Lindstrom J, Eriksson J, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M. Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: The Finnish Diabetes Prevention Study. Diabetes 2003;52:1872-1876.

    Google Scholar 

  45. Fernandez-Real JM, Lopez-Bermejo A, Casamitjana R, Ricart W. Novel interactions of adiponectin with the endocrine system and inflammatory parameters. J Clin Endocrinol Metab 2003;88:2714-2718.

    Google Scholar 

  46. Matarese G, La Cava A, Sanna V, Lord GM, Lechler RI, Fontana S, Zappacosta S. Balancing susceptibility to infection and autoimmunity: A role for leptin? Trends Immunol 2002;23:182-187.

    Google Scholar 

  47. Miller GE, Freedland KE, Carney RM, Stetler CA, Banks WA. Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain Behav Immun 2003;17:276-285.

    Google Scholar 

  48. Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. J Clin Invest 1994;94:1543-1549.

    Google Scholar 

  49. Aljada A, Ghanim H, Assian E, Dandona P. Tumor necrosis factor-alpha inhibits insulin-induced increase in endothelial nitric oxide synthase and reduces insulin receptor content and phosphorylation in human aortic endothelial cells. Metabolism 2002;51:487-491.

    Google Scholar 

  50. Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002;51:3391-3399.

    Google Scholar 

  51. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003;278:13740-13746.

    Google Scholar 

  52. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002;106:2067-2072.

    Google Scholar 

  53. Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 2000;85:2970-2973.

    Google Scholar 

  54. Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda W, Prabhala A, Afzal A, Garg R. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 2001;86:355-362.

    Google Scholar 

  55. Engstrom G, Hedblad B, Stavenow L, Lind P, Janzon L, Lindgarde F. Inflammation-sensitive plasma proteins are associated with future weight gain. Diabetes 2003;52:2097-2101.

    Google Scholar 

  56. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S. Insulin inhibits intranuclear nuclear factor kappaB and stimulates ikappaB in mononuclear cells in obese subjects: Evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001;86:3257-3265.

    Google Scholar 

  57. Aljada A, Ghanim H, Mohanty P. Kapur N, Dandona P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 2002;87:1419-1422.

    Google Scholar 

  58. Kiecolt-Glaser JK, Preacher KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci USA 2003;100:9090-9095.

    Google Scholar 

  59. Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol 2003;24:444-448.

    Google Scholar 

  60. Surwit RS, Schneider MS, Feinglos MN. Stress and diabetes mellitus. Diabetes Care 1992;15:1413-1422.

    Google Scholar 

  61. Ghanim H, Garg R, Aljada A, Mohanty P, Kumbkarni Y, Assian E, Hamouda W, Dandona P. Suppression of Nuclear Factor-kappaB and Stimulation of Inhibitor kappaB by Troglitazone: Evidence for an Anti-inflammatory Effect and a Potential Antiatherosclerotic Effect in the Obese. J Clin Endocrinol Metab 2001;86:1306-1312.

    Google Scholar 

  62. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002;106:679-684.

    Google Scholar 

  63. Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: A new paradigm. Diabetologia 2002;45:924-930.

    Google Scholar 

  64. Juhan-Vague I, Alessi MC, Mavri A, Morange PE. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost 2003;1:1575-1579.

    Google Scholar 

  65. Dandona P, Aljada A, Mohanty P, Ghanim H, Bandyopadhyay A, Chaudhuri A. Insulin suppresses plasma concentration of vascular endothelial growth factor and matrix metalloproteinase-9. Diabetes Care 2003;26:3310-3314.

    Google Scholar 

  66. Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493-2503.

    Google Scholar 

  67. Chaudhuri A, Janicke D, Wilson MF, Tripathy D, Garg R, Bandyopadhyay A, Calieri J, Hofmayer D, Syed T, Ghanim H, Aljada A, Dandona P. Anti-inflammatory and profibrinolytic effect of insulin in acute ST-elevation myocardial infarction. Circulation 2004;109:849-854.

    Google Scholar 

  68. Barrett TD, Hennan JK, Marks RM, Lucchesi BR. C-reactive-protein-associated increase in myocardial infarct size after ischemia/reperfusion. J Pharmacol Exp Ther 2002;303:1007-1013.

    Google Scholar 

  69. Katayama T, Nakashima H, Yonekura T, Honda Y, Suzuki S, Yano K. Significance of acute-phase inflammatory reactants as an indicator of prognosis after acute myocardial infarction: Which is the most useful predictor? J Cardiol 2003;42:49-56.

    Google Scholar 

  70. Aljada A, Garg R, Ghanim H, Mohanty P, Hamouda W, Assian E, Dandona P. Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: Evidence of an antiinflammatory action? J Clin Endocrinol Metab 2001;86:3250-3256.

    Google Scholar 

  71. Aljada A, Garg R, Ghanim H, Mohanty P, Dandona P. Troglitazone reduces intranuclear activator protein (AP-1) in mononuclear cells (MNC) and plasma matrix metalloproteinase-9 (MMP-9) concentration. Diabetes 2001;50(Suppl2):A532.

    Google Scholar 

  72. Ghanim H, Aljada A, Mohanty P, Kapur N, Hofmeyer D, Garg R, Chowhan S, Dandona P. Troglitazone suppresses pro-inflammatory transcription factors, early growth response-1 (Egr)-1 and activator protein (AP-1) in mononuclear cells: Further evidence of the anti-inflammatory effects of troglitazone. Diabetes 2002;51(2):A97.

    Google Scholar 

  73. Mohanty P, Aljada A, Ghanim H, Tripathy D, Syed T, Hofmeyer D, Dandona P. Rosiglitazone improves vascular reactivity, inhibits reactive oxygen species (ROS) generation, reduces p47phox subunit expression in mononuclear cells (MNC) and reduces C reactive protein (CRP) and monocyte chemotactic protein-1 (MCP-1): Evidence of a potent anti-inflammatory effect. Diabetes 2001;50(Suppl 2):A68.

    Google Scholar 

  74. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352:854-865.

  75. Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002;25:2244-2248.

    Google Scholar 

  76. Dandona P, Aljada A, Hofmayer D, Mohanty P, Chaudhuri A. Increased plasma concentration of macrophage migration inhibitory factor (MIF) in the obese and the suppressive action of metformin. In ENDO '2003, the 85th Annual Meeting of the Endocrine Society. Philadelphia, 2003.

  77. Aljada A, Ghanim H, Mohanty P, Hofmeyer D, Tripathy D, Dandona P. Glucose induces an increase in intranuclear nuclear factor-kB (NF-kB), a fall in cellular inhibitor-kb and increase in membrane p47phox subunit. J Clin Endocrinol Metab 2004 (in press).

  78. Krause HP, Keup U, Puls W. Inhibition of disaccharide digestion in rat intestine by the alpha-glucosidase inhibitor acarbose (BAY g 5421). Digestion 1982:23:232-238.

    Google Scholar 

  79. William-Olsson T. alpha-Glucosidase inhibition in obesity. Acta Med Scand Suppl 1985;706:1-39.

    Google Scholar 

  80. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM trial. Jama 2003;290:486-494.

    Google Scholar 

  81. Rodriguez BL, Curb JD, Burchfiel CM, Huang B, Sharp DS, Lu GY, Fujimoto W, Yano K. Impaired glucose tolerance, diabetes, and cardiovascular disease risk factor profiles in the elderly. The Honolulu Heart Program. Diabetes Care 1996;19:587-590.

    Google Scholar 

  82. Chen J, Marciniak TA, Radford MJ, Wang Y, Krumholz HM. Beta-blocker therapy for secondary prevention of myocardial infarction in elderly diabetic patients. Results from the National Cooperative Cardiovascular Project. J Am Coll Cardiol 1999;34:1388-1394.

    Google Scholar 

  83. Magsino CH, Jr., Hamouda W, Bapna V, Ghanim H, Abu-Reish IA, Aljada A, Dandona P. Nadolol inhibits reactive oxygen species generation by leukocytes and linoleic acid oxidation. Am J Cardiol 2000;86:443-448.

    Google Scholar 

  84. Dandona P, Karne R, Ghanim H, Hamouda W, Aljada A, Magsino CH, Jr. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 2000;101:122-124.

    Google Scholar 

  85. Dandona P, Kumar V, Aljada A, Ghanim H, Syed T, Hofmayer D, Mohanty P, Tripathy D, Garg R. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: Evidence of an antiinflammatory action. J Clin Endocrinol Metab 2003;88:4496-4501.

    Google Scholar 

  86. Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, Ohnishi M, Sawaki M, Fujii M, Matsumoto T, Kinoshita M. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 2000;35:714-721.

    Google Scholar 

  87. Ridker PM. Connecting the role of C-reactive protein and statins in cardiovascular disease. Clin Cardiol 2003;26:III39-44.

    Google Scholar 

  88. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto AM, Jr. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001;344:1959-1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandona, P., Aljada, A., Chaudhuri, A. et al. Endothelial Dysfunction, Inflammation and Diabetes. Rev Endocr Metab Disord 5, 189–197 (2004). https://doi.org/10.1023/B:REMD.0000032407.88070.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REMD.0000032407.88070.0a

Navigation