Skip to main content
Log in

Block Copolymer Design for Camptothecin Incorporation into Polymeric Micelles for Passive Tumor Targeting

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Polymeric micelles were designed for targeting of a water-insoluble anticancer agent, camptothecin (CPT). Chemical structures of inner core segment were optimized to achieve high incorporation efficiency and stable CPT-loaded micelles.

Methods. Poly(ethylene glycol)-poly(β-benzyl L-aspartate) block copolymer (PEG-PBLA) was synthesized. The PBLA chain was modified by alkaline hydrolysis of its benzyl group followed by esterification with benzyl, n-butyl, and lauryl groups. Incorporation of CPT into micelles was carried out by an evaporation method. The stability of drug-loaded micelles was studied by gel-permeation chromatography (GPC), and their in vitro release behaviors were analyzed.

Results. CPT was incorporated into polymeric micelles constructed by various block copolymers. Among the esterified groups, block copolymers with high benzyl ester contents showed high CPT loading efficiency and stable CPT-loaded micelles. In chain lengths, 5-27 Bz-69 showed the highest incorporation efficiency. In contrast, 5-52 Bz-67, which had a longer hydrophobic chain, showed low incorporation efficiency. Release of CPT from the micelles was dependent on the benzyl contents and chain lengths. Sustained release was obtained when the benzyl content was high.

Conclusions. CPT was successfully incorporated into polymeric micelles with high efficiency and stability by optimizing chemical structures of the inner core segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. P. Hertzberg, M. J. Caranfa, and S. M. Hecht. On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry 28:4629–4638 (1989).

    PubMed  Google Scholar 

  2. J. Fassberg and V. J. Stella. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 81:676–684 (1992).

    PubMed  Google Scholar 

  3. X. Liu, B. C. Lynn, J. Zhang, L. Song, D. Bom, W. Du, D. P. Curran, and T. G. Burke. A versatile prodrug approach for lipo-somal core-loading of water-insoluble camptothecin anticancer drugs. J. Am. Chem. Soc. 124:7650–7661 (2002).

    PubMed  Google Scholar 

  4. B. B. Lundberg. Biologically active camptothecin derivatives for incorporation into liposome bilayers and lipid emulsions. Anti-cancer Drug Des. 13:453–461 (1998).

    Google Scholar 

  5. D. S. Chow, L. Gong, M. D. Wolfe, and B. C. Giovanella. Modified lactone/carboxylate salt equilibria in vivo by liposomal delivery of 9-nitro-camptothecin. Ann. N. Y. Acad. Sci. 922:164–174 (2000).

    PubMed  Google Scholar 

  6. W. Tong, L. Wang, and M. J. D'Souza. Evaluation of PLGA microspheres as delivery system for antitumor agent-camptothecin. Drug Dev. Ind. Pharm. 29:745–756 (2003).

    PubMed  Google Scholar 

  7. V. Kumar, J. Kang, and R. J. Hohl. Improved dissolution and cytotoxicity of camptothecin incorporated into oxidized-cellulose microspheres prepared by spray drying. Pharm. Dev. Technol. 6:459–467 (2001).

    PubMed  Google Scholar 

  8. B. Ertl, P. Platzer, M. Wirth, and F. Gabor. Poly(D,L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin. J. Control. Rel. 61:305–317 (1999).

    Google Scholar 

  9. J. W. Singer, P. De Vries, R. Bhatt, J. Tulinsky, P. Klein, C. Li, L. Milas, R. A. Lewis, and S. Wallace. Conjugation of campto-thecins to poly-(L-glutamic acid). Ann N Y Acad Sci 922:136–150 (2000).

    PubMed  Google Scholar 

  10. C. D. Conover, R. B. Greenwald, A. Pendri, and K. L. Shum. Camptothecin delivery systems: the utility of amino acid spacers for the conjugation of camptothecin with polyethylene glycol to create prodrugs. Anticancer Drug Des. 14:499–506 (1999).

    PubMed  Google Scholar 

  11. S. S. Dharap, B. Qiu, G. C. Williams, P. Sinko, S. Stein, and T. Minko. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J. Control. Rel. 91:61–73 (2003).

    Google Scholar 

  12. K. M. Tyner, S. R. Schiffman, and E. P. Giannelis. Nanobiohybrids as delivery vehicles for camptothecin. J. Control. Rel. 95: 501–514 (2004).

    Google Scholar 

  13. M. Yokoyama, T. Okano, Y. Sakurai, H. Ekimoto, C. Shibazaki, and K. Kataoka. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res. 51:3229–3236 (1991).

    PubMed  Google Scholar 

  14. Y. Mizumura, Y. Matsumura, T. Hamaguchi, N. Nishiyama, K. Kataoka, T. Kawaguchi, W. J. Hrushesky, F. Moriyasu, and T. Kakizoe. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn. J. Cancer Res. 92:328–336 (2001).

    PubMed  Google Scholar 

  15. M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Oka-moto, and K. Kataoka. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J. Drug Target. 7:171–186 (1999).

    PubMed  Google Scholar 

  16. M. Yokoyama, A. Satoh, Y. Sakurai, T. Okano, Y. Matsumura, T. Kakizoe, and K. Kataoka. Incorporation of water-insoluble anti-cancer drug into polymeric micelles and control of their particle size. J. Control. Rel. 55:219–229 (1998).

    Google Scholar 

  17. V. P. Torchilin, A. N. Lukyanov, Z. Gao, and B. Papahadjopoulos-Sternberg. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 100:6039–6044 (2003).

    PubMed  Google Scholar 

  18. V. P. Torchilin. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv. Drug Deliv. Rev. 54:235–272 (2002).

    PubMed  Google Scholar 

  19. J. Liaw, S. F. Chang, and F. C. Hsiao. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly( propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther. 8:999–1004 (2001).

    PubMed  Google Scholar 

  20. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov. Self-assembly of polyamine-poly(ethylene glycol) copolymers with phosphorothioate oligonucleotides. Bioconjug. Chem. 9:805–812 (1998).

    PubMed  Google Scholar 

  21. Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, Y. Sakurai, and T. Okano. Temperature-modulated platelet and lymphocyte inter-actions with poly(N-isopropylacrylamide)-grafted surfaces. Bio-materials 16:667–673 (1995).

    Google Scholar 

  22. Y. Kaneko, S. Nakamura, K. Sakai, A. Kikuchi, T. Aoyagi, Y. Sakurai, and T. Okano. Synthesis and swelling-deswelling kinetics of poly(N-isopropylacrylamide) hydrogels grafted with LCST modulated polymers. J. Biomater. Sci. Polym. Ed. 10:1079–1091 (1999).

    PubMed  Google Scholar 

  23. A. Harada and K. Kataoka. Pronounced activity of enzymes through the incorporation into the core of polyion complex mi-celles made from charged block copolymers. J. Control. Rel. 72: 85–91 (2001).

    Google Scholar 

  24. Z. Tuzar and P. Kratochvil. Block and graft copolymer micelles in solution. Adv. Colloid Interface Sci. 6:201–232 (1976).

    Google Scholar 

  25. K. Greish, J. Fang, T. Inutsuka, A. Nagamitsu, and H. Maeda. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin. Pharmacokinet. 42:1089–1105 (2003).

    PubMed  Google Scholar 

  26. Y. Matsumura, M. Yokoyama, K. Kataoka, T. Okano, Y. Sakurai, T. Kawaguchi, and T. Kakizoe. Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. Jpn. J. Cancer Res. 90:122–128 (1999).

    PubMed  Google Scholar 

  27. M. Yokoyama, P. Opanasopit, Y. Maitani, K. Kawano, and T. Okano. Polymer design and incorporation method for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin. J. Drug Target. (in press).

  28. M. Yokoyama, G. S. Kwon, T. Okano, Y. Sakurai, T. Seto, and K. Kataoka. Preparation of micelle-forming polymer-drug conjugates. Bioconjug. Chem. 3:295–301 (1992).

    PubMed  Google Scholar 

  29. A. Lavasanifar, J. Samuel, and G. S. Kwon. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stea-rate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. J Control. Rel. 77:155–160 (2001).

    Google Scholar 

  30. M. Yokoyama, G. S. Kwon, T. Okano, Y. Sakurai, and K. Kataoka. Influenceing factors on in vitro micelle stability of adriamycin-block copolymer conjugates. J. Control. Release 28: 59–65 (1994).

    Google Scholar 

  31. A. Shenderova, T. G. Burke, and S. P. Schwendeman. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res. 16:241–248 (1999).

    PubMed  Google Scholar 

  32. C. Zhao, Y. Wang, M. A. Winnik, G. Riess, and M. D. Croucher. Fluorescence probe technique used to study micelle formation in water-soluble block co-polymer. Langmuir 6:514–516 (1990).

    Google Scholar 

  33. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block co-polymer. Cancer Res. 50:1693–1700 (1990).

    PubMed  Google Scholar 

  34. J. Fassberg and V. J. Stella. A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J. Pharm. Sci. 81:676–684 (1992).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opanasopit, P., Yokoyama, M., Watanabe, M. et al. Block Copolymer Design for Camptothecin Incorporation into Polymeric Micelles for Passive Tumor Targeting. Pharm Res 21, 2001–2008 (2004). https://doi.org/10.1023/B:PHAM.0000048190.53439.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000048190.53439.eb

Navigation