Skip to main content
Log in

Cytokines, growth factors and sprouting at the neuromuscular junction

  • Published:
Journal of Neurocytology

Abstract

The formation of neuronal sprouts, either from synaptic terminals or nearby nodes of Ranvier, is a widely known form of plasticity of motoneurons. Sprouts form in response to several stimuli, but most notably in partially denervated or paralyzed muscle. In search of the cellular or molecular basis of this phenomenon, several largely parallel lines of investigation have been pursued. Strong evidence is presented that at least four cytokines or growth factors may be involved in motoneuron sprouting, each of which uses a distinctive signaling pathway. Three of the different proposed sprouting molecules: neuroleukin, insulin-like growth factor, and neural cell adhesion molecules can be viewed as muscle-derived retrograde signaling molecules of roughly equal potency to induce motoneurons to sprout. A fourth molecule, ciliary neurotrophic factor (CNTF) is likely to form an essential anterograde signal, from Schwann cells to muscle fibers, that ultimately produces sprouting. Other cytokines and growth factors such a neurotrophins or GDNF family members are discussed, but their role in motoneuron sprouting is less clear. These cytokines and growth factors could represent redundant mechanisms for self-repair of the neuromuscular junction or they could interact at different levels of their cellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABE, K., NAMIKAWA, K., HONMA, M., IWATA, T., MATSUOKA, I., WATABE, K. & KIYAMA, H. (2001) Inhibition of Ras extracellular-signal-regulated kinase (ERK) mediated signaling promotes ciliary neurotrophic factor (CNTF) expression in Schwann cells. J. Neurochem. 77, 70–703.

    PubMed  Google Scholar 

  • AIGNER, L., ARBER, S., KAPFHAMMER, J. P., LAUX, T., SCHNEIDER, C., BOTTERI, F., BRENNER, H. R. & CARONI, P. (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83, 26–278.

    PubMed  Google Scholar 

  • AIRAKSINEN, M. S. & SAARMA, M. (2002) The GDNF family: Signalling, biological functions and therapeutic value. Nature Rev. 3, 38–394.

    Google Scholar 

  • ANGAUT-PETIT, D., MOLGO, J., COMELLA, J. X., FAILLE, L. & TABTI, N. (1990) Terminal sprouting in mouse neuromuscular junctions poisoned with botulinum type A toxin: Morphological and electrophysiological features. Neurosci. 37, 79–808.

    Google Scholar 

  • BALICE-GORDON, R. J. & LICHTMAN, J. W. (1990) In vivo visualization of the growth of pre-and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 89–908.

    PubMed  Google Scholar 

  • BARBACID, M. (1995) Structural and functional properties of the TRK family of neurotrophin receptors. Ann. NY Acad. Sci. 766, 44–458.

    PubMed  Google Scholar 

  • BARDE, Y.-A., EDGAR, D. & THOENEN, H. (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 54–553.

    PubMed  Google Scholar 

  • BATCHELOR, P. E., LIBERATORE, G. T., PORRITT, M. J., DONNAN, G. A. & HOWELLS, D. W. (2000) Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur. J. Neurosci. 12, 346–3468.

    PubMed  Google Scholar 

  • BAXTER, G. T., RADEKE, M. J., KUO, R. C., MAKRIDES, V., HINKLE, B., HOANG, R., MEDINA-SELBY, A., COIT, D., VALENZUELA, P. & FEINSTEIN, S. C. (1997) Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2. J. Neurosci. 17, 268–2690.

    PubMed  Google Scholar 

  • BETZ, W. J., CALDWELL, J. H. & RIBCHESTER, R. R. (1980) Sprouting of active nerve terminals in partially inactive muscles of the rat. J. Physiol. (Lond.) 303, 28–297.

    Google Scholar 

  • BONNEH-BARKAY, D., SHLISSEL, M., BERMAN, B., SHAOUL, E., ADMON, A., VLODAVSKY, I., CAREY, D. J., ASUNDI, V. K., REICH-SLOTKY, R. & RON, D. (1997) Identification of glypican as a dual modulator of the biological activity of fibroblast growth factors. J. Biol. Chem. 272, 1241–12421.

    PubMed  Google Scholar 

  • BOOTH, C. M., KEMPLAY, S. K. & BROWN, M. C. (1990) An antibody to neural cell adhesion molecule impairs motor nerve terminal sprouting in a mouse muscle locally paralysed with botulinum toxin. Neurosci. 35, 8– 91.

    Google Scholar 

  • BOYD, J. G. & GORDON, T. (2002) A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur. J. Neurosci. 15, 61–626.

    PubMed  Google Scholar 

  • BROWN, M. & IRONTON, R. (1977) Motor neurone sprouting induced by prolonged tetrodotoxin block of nerve action potentials. Nature 265, 45–461.

    PubMed  Google Scholar 

  • BROWN, M. C., GOODWIN, G. M. & IRONTON, R. (1977) Prevention of motor nerve sprouting in botulinum toxin poisoned mouse soleus muscles by direct stimulation of the muscle. J. Physiol. (Lond.) 267, 42P-43P.

    Google Scholar 

  • BROWN, M. C., HOLLAND, R. E., HOPKINS, W. G. & KEYNES, R. J. (1980a) Anassessment of the spread of the signal for terminal sprouting within and between muscles. Brain Res. 210, 14–151.

    Google Scholar 

  • BROWN, M. C., HOLLAND, R. L. & IRONTON, R. (1980b) Nodal and terminal sprouting frommotor nerves in fast and slow muscles of the mouse. J. Physiol. (Lond.) 306, 49–510.

    Google Scholar 

  • BROWN, M. C. & IRONTON, R. (1978) Sprouting and regression of neuromuscular synapses in partially denervated mammalian muscles. J. Physiol. (Lond.) 278, 32–348.

    Google Scholar 

  • CAMU, W. & HENDERSON, C. E. (1992) Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor J. Neurosci. Meth. 44, 5–70.

    Google Scholar 

  • CARONI, P. & GRANDES, P. (1990) Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J. Cell Biol. 110, 130–1317.

    PubMed  Google Scholar 

  • CARONI, P., SCHNEIDER, C., KIEFER, M. C. & ZAPF, J. (1994) Role of muscle insulin-like growth factors in nerve sprouting: Suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J. Cell Biol. 125, 89–902.

    PubMed  Google Scholar 

  • CHAPUT, M., CLAES, V., PORTETELLE, D., CLUDTS, I., CRAVADOR, A., BURNY, A., GRAS, H. & TARTAR, A. (1988) The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332, 45–455.

    PubMed  Google Scholar 

  • CHUANG, T. Y., HUANG, M. C., CHEN, K. C., CHANG, Y. C., YEN, Y. S., LEE, L. S. & CHENG, H. (2002) Forelimb muscle activity following nerve graft repair of ventral roots in the rat cervical spinal cord. Life Sci. 71, 48–496.

    PubMed  Google Scholar 

  • CIFUENTES-DIAZ, C., VELASCO, E., MEUNIER, F. A., GOUDOU, D., BELKADI, L., FAILLE, L., MURAWSKY, M., ANGAUT-PETIT, D., MOLGO, J., SCHACHNER, M., SAGA, Y., AIZAWA, S. & RIEGER, F. (1998) The peripheral nerve and the neuromuscular junction are affected in the tenascin-C-deficient mouse. Cell Mol. Biol. 44, 35–379.

    Google Scholar 

  • COVAULT, J. & SANES, J. R. (1985) Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc. Natl. Acad. Sci. USA 82, 454–4548.

    PubMed  Google Scholar 

  • DAVIS, S., ALDRICH, T. H., VALENZUELA, D. M., WONG, V. V., FURTH, M. E., SQUINTO, S. P. & YANCOPOULOS, G. D. (1991) The receptor for ciliary neurotrophic factor. Science 253, 5–63.

    PubMed  Google Scholar 

  • DE PABLO, F., PEREZ-VILLAMIL, B., SERNA, J., GONZALEZ-GUERRERO, P. R., LOPEZCARRANZA, A., DE LA ROSA, E. J., ALEMANY, J. & CALDES, T. (1993) IGF-I and the IGF-I receptor in development of nonmammalian vertebrates. Mol. Reprod. Dev. 35, 42–432.

    PubMed  Google Scholar 

  • DE PAIVA, A., MEUNIER, F. A., MOLGO, J., AOKI, K. R. & DOLLY, J. O. (1999) Functional repair of motor endplates after botulinum neurotoxin A posioning: Biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc. Natl. Acad. Sci. USA 96, 320–3205.

    PubMed  Google Scholar 

  • DIAZ, J. & PECOT-DECHAVASSINE, M. (1990) Nerve sprouting induced by a piece of peripheral nerve placed over a normally innervated frog muscle. J. Physiol. (Lond.) 421, 12–133.

    Google Scholar 

  • DOHERTY, P., FRUNS, M., SEATON, P., DICKSON, G., BARTON, C. H., SEARS, T. A. & WALSH, F. S. (1990) A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature 343, 46–466.

    PubMed  Google Scholar 

  • DUCHEN, J. W. & STRICH, S. (1968) The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Quart. J. Exp. Physiol. 53, 8–89.

    PubMed  Google Scholar 

  • DUCHEN, L. W. (1970) Effects of botulinum toxin on the distribution of succinate dehydrogenase and phosphorylase in fast and slow skeletal muscles of the mouse. J. Neurol. Neurosurg. Psychiat. 33, 58–585.

    PubMed  Google Scholar 

  • DUCHEN, L. W. (1971) Changes in the electron microscopic structure of slow and fast skeletal muscle fibres of the mouse after the local injection of botulinum toxin. J. Neurol. Sci. 14, 6–74.

    PubMed  Google Scholar 

  • ENGLISH, A. W. & LETBETTER, W. D. (1982) Anatomy and innervation patterns of cat lateral gastrocnemius and plantaris muscles. Am. J. Anat. 164, 6–77.

    PubMed  Google Scholar 

  • ENGLISH, A. W. & SCHWARTZ, G. (1995) Both basic fibroblast growth factor and ciliary neurotrophic factor promote the retention of polyneuronal innervation of developing skeletal muscle fibers. Dev. Biol. 169, 5–64.

    PubMed  Google Scholar 

  • FAIK, P., WALKER, J. I., REDMILL, A. A. & MORGAN, M. J. (1988) Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3? sequences. Nature 332, 45–457.

    PubMed  Google Scholar 

  • FLORKIEWICZ, R. Z., MAJACK, R. A., BUECHLER, R. D. & FLORKIEWICZ, E. (1995) Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J. Cell Physiol. 162, 38– 399.

    PubMed  Google Scholar 

  • FLORKIEWICZ, R. Z. & SOMMER, A. (1989) Human basic fibroblast growth factor gene encodes four polypeptides: Three initiate translation from non-AUG codons. Proc. Natl. Acad. Sci. USA 86, 397–3981.

    PubMed  Google Scholar 

  • FREY, D., SCHNEIDER, C., XU, L., BORG, J., SPOOREN, W. & CARONI, P. (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J. Neurosci. 20, 253–2542.

    PubMed  Google Scholar 

  • FRIEDMAN, B., SCHERER, S. S., RUDGE, J. S., HELGREN, M., MORRISEY, D., MCCLAIN, J., WANG, D. Y., WIEGAND, S. J., FURTH, M. E., LINDSAY, R. M. & IP, N. Y. (1992) Regulation of ciliary neurotrophic factor expression in myelin related Schwann cells in vivo. Neuron 9, 29–305.

    PubMed  Google Scholar 

  • FRISEN, J., VERGE, V. M., FRIED, K., RISLING, M., PERSSON, H., TROTTER, J., HOKFLET, T. & LINDHOLM, D. (1993) Characterization of glial trkB receptors: Differential response to injury in the central and peripheral nervous systems. Proc. Natl. Acad. Sci. USA 90, 497–4975.

    PubMed  Google Scholar 

  • FUJIMOTO, I., BRUSES, J. L. & RUTISHAUSER, U. (2001) Regulation of cell adhesion by polysialic acid. Effects on cadherin, immunoglobulin cell adhesion molecule, and integrin function and independence from neural cell adhesion molecule binding or signaling activity. J. Biol. Chem. 276, 3174–31751.

    PubMed  Google Scholar 

  • FUNAKOSHI, H., BELLUARDO, N., ARENAS, E., YAMAMOTO, Y., CASABONA, A., PERSSON, H. & IBANEZ, C. F. (1995) Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268, 149–1499.

    PubMed  Google Scholar 

  • FUNAKOSHI, H., FRISEN, J., BARBANY, G., TIMMUSK, T., ZACHRISSON, O., VERGE, V. M. & PERSSON, H. (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J. Cell Biol. 123, 45–465.

    PubMed  Google Scholar 

  • GATESY, S. M. & ENGLISH, A. W. (1993) Evidence for compartmental identity in the development of the rat lateral gastrocnemius muscle. Dev. Dyn. 196, 17–182.

    PubMed  Google Scholar 

  • GEARING, D. P. (1993) The leukemia inhibitory factor and its receptor Adv. Immunol. 53, 3–58.

    PubMed  Google Scholar 

  • GEARING, D. P., THUT, C. J., VANDEBOS, T., GIMPEL, S. D., DELANEY, P. B., KING, J., PRICE, V., COSMAN, D. & BECKMANN, M. P. (1991) Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 10, 283–2848.

    PubMed  Google Scholar 

  • GLAZNER, G. W. & ISHII, D. N. (1995) Insulin like growth factor gene expression in rat muscle during reinnervation. Muscle Nerve. 18, 143–1442.

    PubMed  Google Scholar 

  • GONZALEZ, M., RUGGIERO, F. P., CHANG, Q., SHI, Y. J., RICH, M. M., KRANER, S. & BALICE-GORDON, R. J. (1999) Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron 24, 56–583.

    PubMed  Google Scholar 

  • GRIESBECK, O., PARSADANIAN, A. S., SENDTNER, M. & THOENEN, H. (1995) Expression of neurotrophins in skeletal muscle: Quantitative comparison and significance for motoneuron survival and maintenance of function. J. Neurosci. Res. 42, 2–33.

    PubMed  Google Scholar 

  • GURNEY, M. E. (1984) Suppression of sprouting at the neuromuscular junction by immune sera. Nature 307, 54–548.

    PubMed  Google Scholar 

  • GURNEY, M. E. (1987) Neuroleukin: Basic biology and functional interaction with human immunodeficiency virus. Immunol. Rev. 100, 20–223.

    PubMed  Google Scholar 

  • GURNEY, M. E., APATOFF, B. R. & HEINRICH, S. P. (1986a) Suppression of terminal axonal sprouting at the neuromuscular junction by monoclonal antibodies against a muscle-derived antigen of 56,000 daltons. J. Cell Biol. 102, 226–2272.

    PubMed  Google Scholar 

  • GURNEY, M. E., APATOFF, B. R. & HEINRICH, S. P. (1987) Purification of a survival factor for spinal neurons from mouse salivary gland. Adv. Exp. Med. Biol. 209, 5–58.

    PubMed  Google Scholar 

  • GURNEY, M. E., APATOFF, B. R., SPEAR, G. T., BAUMEL, M. J., ANTEL, J. P., BANIA, M. B. & REDER, A. T. (1986b) Neuroleukin:Alymphokine product of lectin-stimulated T cells. Science 234, 57–581.

    PubMed  Google Scholar 

  • GURNEY, M. E., BELTON, A. C., CASHMAN, N. & ANTEL, J. P. (1984) Inhibition of terminal axonal sprouting by serumfrompatients with amyotrophic lateral sclerosis. N. Engl. J. Med. 311, 93–939.

    PubMed  Google Scholar 

  • GURNEY, M. E., HEINRICH, S. P., LEE, M. R. & YIN, H. S. (1986c) Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234, 56–574.

    PubMed  Google Scholar 

  • GURNEY, M. E., YAMAMOTO, H. & KWON, Y. (1992) Induction of motor neuron sprouting in vivo by ciliary neurotrophic factor and basic fibroblast growth factor. J. Neurosci. 12, 324–3247.

    PubMed  Google Scholar 

  • HAGA, A., NIINAKA, Y. & RAZ, A. (2000) Phosphohexose isomerase/autocrine motility factor/neuroleukin/ maturation factor is a multifunctional phosphoprotein. Biochim. Biophys. Acta. 1480, 23–244.

    PubMed  Google Scholar 

  • HALLAK, H., SEILER, A. E., GREEN, J. S., ROSS, B. N. & RUBIN, R. (2000) Association of heterotrimeric G(i) with the insulin-like growth factor-I receptor. Release of G (beta gamma) subunits upon receptor activation. J. Biol. Chem. 275, 225–2258.

    PubMed  Google Scholar 

  • HANSSON, H. A., DAHLIN, L. B., DANIELSEN, N., FRYKLUND, L., NACHEMSON, A. K., POLLERYD, P., ROZELL, B., SKOTTNER, A., STEMME, S. & LUNDBORG, G. (1986) Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol. Scand. 126, 60–614.

    PubMed  Google Scholar 

  • HASSAN, S. M., JENNEKENS, F. G., VELDMAN, H. & OESTREICHER, B. A. (1994) GAP-43 and p75NGFR immunoreactivity in presynaptic cells following neuromuscular blockade by botulinum toxin in rat. J. Neurocytol. 23, 35–363.

    PubMed  Google Scholar 

  • HELLER, S., FINN, T. P., HUBER, J., NISHI, R., GEISSEN, M., PUSCHEL, A. W. & ROHRER, H. (1995) Analysis of function and expression of the chick GPA receptor (GPAR alpha) suggests multiple roles in neuronal development. Development 121, 268–2693.

    PubMed  Google Scholar 

  • HOFFMAN, H. (1950) Local reinnervation in partially denervated muscle: A histophysiological study. Aust. J. Exp. Biol. Med. Sci. 28, 38–397.

    PubMed  Google Scholar 

  • HOLLAND, R. & BROWN, M. (1980) Postsynaptic transmission block can cause terminal sprouting of a motor nerve. Science 207, 64–651.

    PubMed  Google Scholar 

  • HUBER, K., MEISINGER, C. & GROTHE, C. (1997) Expression of fibroblast growth factor-2 in hypoglossal motoneurons is stimulated by peripheral nerve injury. J. Comp. Neurol. 382, 18–198.

    PubMed  Google Scholar 

  • HUGHES, R. A., SENDTNER, M. & THOENEN, H. (1993) Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res. 36, 66–671.

    PubMed  Google Scholar 

  • IP, N. Y., MCCLAIN, J., BARREZUETA, N. X., ALDRICH, T. H., PAN, L., LI, Y., WIEGAND, S. J., FRIEDMAN, B., DAVIS, S. & YANCOPOULOS, G. D. (1993) The alpha component of the CNTF receptor is required for signaling and defines potential CNTF targets in the adult and during development. Neuron 10, 8–102.

    PubMed  Google Scholar 

  • IRONTON, R., BROWN, M. C. & HOLLAND, R. L. (1978) Stimuli to intramuscular nerve growth. Brain Res. 156, 35–354.

    PubMed  Google Scholar 

  • ISHII, D. N. (1989) Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis. Proc. Natl. Acad. Sci. USA 86, 289–2902.

    PubMed  Google Scholar 

  • ISHII, D. N., GLAZNER, G. W. & PU, S. F. (1994) Role of insulin-like growth factors in peripheral nerve regeneration. Pharmacol. Therapeut. 62, 12–144.

    Google Scholar 

  • JOHNSON, H., HOKFELT, T. & ULFHAKE, B. (1996) Decreased expression of TrkB and TrkC mRNAs in spinal motoneurons of aged rats. Eur. J. Neurosci. 8, 49–499.

    PubMed  Google Scholar 

  • JUZANS, P., COMELLA, J. X., MOLGO, J., FAILLE, L. & ANGAUT-PETIT, D. (1996) Nerve terminal sprouting in botulinum type-A treated mouse levator auris longus muscle. Neuromus. Disord. 6, 17–185.

    Google Scholar 

  • KELLER-PECK, C. R., FENG, G., SANES, J. R., YAN, Q., L ICHTMAN, J. W. & SNIDER, W. D. (2001) Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J. Neurosci. 21, 613–6146.

    PubMed  Google Scholar 

  • KEMPLAY, S. (1981) Terminal sprouting in the sternocostalis muscle of the rat. Effects of increasing extent of partial denervation. Cell Tiss. Res. 218, 42–425.

    Google Scholar 

  • KIRSCH, M., SCHNEIDER, T., LEE, M. Y. & HOFMANN, H. D. (1998) Lesion-induced changes in the expression of ciliary neurotrophic factor and its receptor in rat optic nerve. Glia. 23, 23–248.

    PubMed  Google Scholar 

  • KLEIN, R., CONWAY, D., PARADA, L. F. & BARBACID, M. (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 64–656.

    PubMed  Google Scholar 

  • KOLIATSOS, V. E., CLATTERBUCK, R. E., WINSLOW, J. W., CAYOUETTE, M. H. & PRICE, D. L. (1993) Evidence that brain derived neurotrophic factor is a trophic factor for motoneurons in vivo. Neuron 10, 35–367.

    PubMed  Google Scholar 

  • KUST, B. M., COPRAY, J. C., BROUWER, N., TROOST, D. & BODDEKE, H. W. (2002) Elevated levels of neurotrophins inhumanbiceps brachii tissue of amyotrophic lateral sclerosis. Exp. Neurol. 177, 41–427.

    PubMed  Google Scholar 

  • LANGENFELD-OSTER, B., FAISSNER, A., IRINTCHEV, A. & WERNIG, A. (1994) Polyclonal antibodies against NCAM and tenascin delay endplate reinnervation. J. Neurocytol. 23, 59–604.

    PubMed  Google Scholar 

  • LECLERC, N., VALLEE, A. & NABI, I. R. (2000) Expression of the AMF/neuroleukin receptor in developing 958 ENGLISH and adult brain cerebellum. J. Neurosci. Res. 60, 60– 612.

    PubMed  Google Scholar 

  • LELIEVRE, E., PLUN-FAVREAU, H., CHEVALIER, S., FROGER, J., GUILLET, C., ELSON, G. C., GAUCHAT, J. F. & GASCAN, H. (2001) Signaling pathways recruited by the cardiotrophin-like cytokine/cytokine-like factor-1 composite cytokine: Specific requirement of the membrane-bound form of ciliary neurotrophic factor receptor alpha component. J. Biol. Chem. 276, 2247–22484.

    PubMed  Google Scholar 

  • LEWIS, M. E., NEFF, N. T., CONTRERAS, P. C., STONG, D. B., OPPENHEIM, R. W., GREBOW, P. E. & VAUGHT, J. L. (1993) Insulin-like growth factor-I: Potential for treatment of motor neuronal disorders. Exp. Neurol. 124, 7–88.

    PubMed  Google Scholar 

  • LICHTMAN, J. W., MAGRASSI, L. & PURVES, D. (1987) Visualization of neuromuscular junctions over periods of several months in living mice. J. Neurosci. 7, 121–1222.

    PubMed  Google Scholar 

  • LIEBROCK, J., LOTSPEICH, F., HOHN, A., HOFER, M., HENGERER, B., MASIAKOWSKI, P., THOENEN, H. & BARDE, Y.-A. (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 14–152.

    PubMed  Google Scholar 

  • LIEM, R. S., BROUWER, N. & COPRAY, J. C. (2001) Ultrastructural localisation of intramuscular expression of BDNF mRNA by silver-gold intensified non-radioactive in situ hybridisation Histochem. Cell Biol. 116, 54–551.

    Google Scholar 

  • LOMEN-HOERTH, C. & SHOOTER, E. M. (1995) Widespread neurotrophin receptor expression in the immune system and other nonneuronal rat tissues J. Neurochem. 64, 178–1789.

    PubMed  Google Scholar 

  • LOVE, F. M. & THOMPSON, W. J. (1999) Glial cells promote muscle reinnervation by responding to activity-dependent postsynaptic signals. J. Neurosci. 19, 1039–10396.

    PubMed  Google Scholar 

  • LUO, Y., LONG, J. M., LU, C., CHAN, S. L., SPANGLER, E. L., MASCARUCCI, P., RAZ, A., LONGO, D. L., MATTSON, M. P., INGRAM, D. K. & WENG, N. P. (2002) A link between maze learning and hippocampal expression of neuroleukin and its receptor, gp78. J. Neurochem. 80, 35–361.

    PubMed  Google Scholar 

  • LUTTRELL, L. M., VAN BIESEN, T., HAWES, B. E., KOCH, W. J., TOUHARA, K. & LEFKOWITZ, R. J. (1995) G beta gamma subunits mediate mitogenactivated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J. Biol. Chem. 270, 1649–16498.

    PubMed  Google Scholar 

  • MARCH, C. J., BOSLEY, B., LARSEN, A., CERRETTI, D. P., BRAEDT, G. & PRICE, V. (1985) Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315, 641.

    PubMed  Google Scholar 

  • MASON, I. J. (1994) Do adhesion molecules signal via FGF receptors? Current Biol. 4, 115–1161.

    Google Scholar 

  • MIDDLEMAS, D. S., LINDBERG, R. A. & HUNTER, T. (1991) trkB, a neural receptor protein-tyrosine kinase: Evidence for a full-length and two truncated receptors. Mol. Cell. Biol. 11, 14–153.

    PubMed  Google Scholar 

  • MILLECAMPS, S., NICOLLE, D., CEBALLOS-PICOT, I., MALLET, J. & BARKATS, M. (2001) Synaptic sprouting increases the uptake capacities of motoneurons in amyotrophic lateral sclerosis mice. Proc. Natl. Acad. Sci. USA 98, 758–7587.

    PubMed  Google Scholar 

  • MIZRACHI, Y. (1989) Neurotrophic activity of monomeric glucophosphoisomerase was blocked by human immunodeficiency virus (HIV-1) and peptides from HIV-1 envelope glycoprotein. J. Neurosci. Res. 23, 21–224.

    PubMed  Google Scholar 

  • MOSCOSO, L. M., CREMER, H. & SANES, J. R. (1998) Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J. Neurosci. 18, 146–1477.

    PubMed  Google Scholar 

  • MURPHY, M., DUTTON, R., KOBLAR, S., CHEEMA, S. S. & BARTLETT, P. (1997) Cytokines which signal through the LIF receptor and their actions in the nervous system. Progr. Neurobiol. 52, 35–378.

    PubMed  Google Scholar 

  • NABI, I. R., WATANABE, H. & RAZ, A. (1992) Autocrine motility factor and its receptor: Role in cell locomotion and metastasis. Cancer Metast. Rev. 11, –20.

    Google Scholar 

  • NEVE, R. L., COOPERSMITH, R., MCPHIE, D. L., SANTEUFEMIO, C., PRATT, K. G., MURPHY, C. J. & LYNN, S. D. (1998) The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis. J. Neurosci. 18, 775–7767.

    PubMed  Google Scholar 

  • NGUYEN, Q. T., PARSADANIAN, A. S., SNIDER, W. D. & LICHTMAN, J. W. (1998) Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Science 279, 172–1729.

    PubMed  Google Scholar 

  • NICOLA, N. A. & HILTON, D. J. (1996) Leukemia inhibitory factor and its receptor. In Growth Factors and Cytokines in Health and Disease (edited by LE ROITH, D. & BANDY, C.). Greenwich: JAI Press, Inc.

    Google Scholar 

  • NIETHAMMER, P., DELLING, M., SYTNYK, V., DITYATEV, A., FUKAMI, K. & SCHACHNER, M. (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J. Cell Biol. 157, 52–532.

    PubMed  Google Scholar 

  • ORNITZ, D. M. & ITOH, N. (2001) Fibroblast growth factors. Genome Biology. 2, 3005.

    Google Scholar 

  • PESTRONK, A. & DRACHMAN, D. B. (1978) Motor nerve sprouting and acetylcholine receptors. Science 199, 122–1225.

    PubMed  Google Scholar 

  • PLUN-FAVREAU, H., ELSON, G., CHABBERT, M., FROGER, J., DELAPEYRIERE, O., LELIEVRE, E., GUILLET, C., HERMANN, J., GAUCHAT, J. F., GASCAN, H. & CHEVALIER, S. (2001) The ciliary neurotrophic factor receptor alpha component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine. EMBO J. 20, 169–1703.

    PubMed  Google Scholar 

  • POWERS, C. J., MCLESKEY, S. W. & WELLSTEIN, A. (2000) Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer. 7, 16–197.

    PubMed  Google Scholar 

  • PU, S. F., ZHUANG, H. X., MARSH, D. J. & ISHII, D. N. (1999a) Insulin-like growth factor-II increases and IGF is required for postnatal rat spinal motoneuron survival following sciatic nerve axotomy. J. Neurosci. Res. 55, –16.

    PubMed  Google Scholar 

  • PU, S. F., ZHUANG, H. X., MARSH, D. J. & ISHII, D. N. (1999b) Time-dependent alteration of insulin-like growth factor gene expression during nerve regeneration in regions of muscle enriched with neuromuscular junctions. Brain Res. Mol. Brain Res. 63, 20–216.

    PubMed  Google Scholar 

  • RAMER, M. S., THOMPSON, S. W. & MCMAHON, S. B. (1999) Causes and consequences of sympathetic basket formation in dorsal root ganglia. Pain Suppl, S11– S120.

  • RAMIREZ, J. J., FINKLESTEIN, S. P., KELLER, J., ABRAMS, W., GEORGE, M. N. & PARAKH, T. (1999) Basic fibroblast growth factor enhances sprouting after cortical injury in rats. NeuroReport. 10, 120–1024.

    PubMed  Google Scholar 

  • RENDE, M., GIAMBANCO, I., BURATTA, M. & TONALI, P. (1995) Axotomy induces a different modulation of both low-affinity nerve growth factor receptor and choline acetyltransferase between adult rat spinal and brainstem motoneurons. J. Comp. Neurol. 363, 24–263.

    PubMed  Google Scholar 

  • RENDE, M., PROVENZANO, C. & TONALI, P. (1993) Modulation of low-affinity nerve growth factor receptor in injured adult rat spinal cord motoneurons. J. Comp. Neurol. 338, 56–574.

    PubMed  Google Scholar 

  • REYNOLDS, M. L. & WOOLF, C. J. (1992) Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J. Neurocytol. 21, 5–66.

    PubMed  Google Scholar 

  • ROMERO, M. I., RANGAPPA, N., LI, L., LIGHTFOOT, E., GARRY, M. G. & SMITH, G. M. (2000) Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J. Neurosci. 20, 443–4445.

    PubMed  Google Scholar 

  • SALA, C., ANDREOSE, J. S., FUMAGALLI, G. & LOMO, T. (1995) Calcitonin gene-related peptide: Possible role in formation and maintenance of neuromsucular junctions. J. Neurosci. 15, 52–528.

    PubMed  Google Scholar 

  • SANES, J. R. & LICHTMAN, J. W. (1999) Development of the vertebrate neuromuscular junction. Ann. Rev. Neurosci. 22, 38–442.

    PubMed  Google Scholar 

  • SANTAFE, M., URBANO, F. J., LANUZA, M. A. & UCHITEL, O. D. (2000) Multiple types of calcium channels mediate transmitter release during functional recovery of botulinum toxin type A-poisoned mouse motor nerve terminals. Neurosci. 95, 22–234.

    Google Scholar 

  • SCHLESSINGER, J. & ULLRICH, A. (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9, 38– 391.

    PubMed  Google Scholar 

  • SIDDLE, K., SOOS, M. A., FIELD, C. E. & NAVE, B. T. (1994) Hybrid and atypical insulin/insulin-like growth factor I receptors. Hormone Res. 41, 5–64.

    PubMed  Google Scholar 

  • SIDDLE, K., URSO, B., NIESLER, C. A., COPE, D. L., MOLINA, L., SURINYA, K. H. & SOOS, M. A. (2001) Specificity in ligand binding and intracellular signalling by insulin and insulin-like growth factor receptors. Biochem. Soc. Trans. 29, 51–525.

    PubMed  Google Scholar 

  • SIEGEL, S. G., PATTON, B. & ENGLISH, A. W. (2000) Ciliary neurotrophic factor is required for motoneuron sprouting. Exp. Neurol. 166, 20–212.

    PubMed  Google Scholar 

  • SILLETTI, S. & RAZ, A. (1993) Autocrine motility factor is a growth factor. Biochem. Biophys. Res. Com. 194, 44– 457.

    PubMed  Google Scholar 

  • SILLETTI, S. & RAZ, A. (1996) Regulation of autocrine motility factor receptor expression in tumor cell locomotion and metastasis. Curr. Top. Microbiol. Immunol. 213, 13–169.

    PubMed  Google Scholar 

  • SKENE, J. H. (1989) Axonal growth-associated proteins. Ann. Rev. Neurosci. 12, 12–156.

    PubMed  Google Scholar 

  • SLEEMAN, M. W., ANDERSON, K. D., LAMBERT, P. D., YANCOPOULOS, G. D. & WIEGAND, S. J. (2000) The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharmaceut. Acta Helvet. 74, 26–272.

    Google Scholar 

  • SON, Y.-J. & THOMPSON, W. J. (1995) Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14, 13–141.

    PubMed  Google Scholar 

  • SOOS, M. A., FIELD, C. E. & SIDDLE, K. (1993) Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem. J. 290, 41–426.

    PubMed  Google Scholar 

  • STAHL, N. & YANCOPOULOS, G. D. (1994) The tripartite CNTF receptor complex: Activation and signaling involves components shared with other cytokines. J. Neurobiol. 25, 145–1466.

    PubMed  Google Scholar 

  • STOCKLI, K. A., LILLIEN, L. E., NAHER-NOE, M., BREITFELD, G., HUGHES, R. A., RAFF, M. C., THOENEN, H. & SENDTNER, M. (1991) Regional distribution, developmental changes, and cellular localization of CNTF-mRNA and protein in the rat brain. J. Cell Biol. 115, 44–459.

    PubMed  Google Scholar 

  • STOOP, R. & POO, M. M. (1996) Synaptic modulation by neurotrophic factors. Progr. Brain Res. 109, 35–364.

    Google Scholar 

  • STRACKE, M. L., GUIRGUIS, R., LIOTTA, L. A. & SCHIFFMANN, E. (1987) Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway inhumanmelanoma cells. Biochem. Biophys. Res. Com. 146, 33–345.

    PubMed  Google Scholar 

  • TAKAHASHI, M. (2001) THe GDNF/Ret signaling pathway and human diseases. Cytokine Growth Factor Rev. 12, 36–373.

    PubMed  Google Scholar 

  • TARABAL, O., CALDERO, J. & ESQUERDA, J. E. (1996) Intramuscular nerve sprouting induced by CNTF is associated with increases in CGRP content in mouse motor nerve terminals. Neurosci. Lett. 219, 6–64.

    PubMed  Google Scholar 

  • THOMPSON, S. W. & MAJITHIA, A. A. (1998) Leukemia inhibitory factor induces sympathetic sprouting in intact dorsal root ganglia in the adult rat in vivo. J. Physiol. (Lond.) 506, 80–816.

    Google Scholar 

  • TORIGOE, K. (1985) Distribution of motor nerve sprouting in the mouse gastrocnemius muscle after partial denervation. Brain Res. 330, 27–282.

    PubMed  Google Scholar 

  • TRUPP, M., SCOTT, R. W., WHITEMORE, S. R. & IBANEZ, C. F. (1999) Ret-dependent and-independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J. Biol. Chem. 274, 2088–20894.

    PubMed  Google Scholar 

  • TSOULFAS, P., SOPPET, D., ESCANDON, E., TESSAROLLO, L., MENDOZA-RAMIREZ, J. L., ROSENTHAL, A., NIKOLICS, K. & PARADA, L. F. (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells. Neuron 10, 97–990.

    PubMed  Google Scholar 

  • TSUI-PIERCHALA, B. A., ENCINAS, M., MILBRANDT, J. & JOHNSON, E. M., JR. (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci. 25, 41–417.

    PubMed  Google Scholar 

  • VALENZUELA, D. M., MAISONPIERRE, P. C., GLASS, D. J., ROJAS, E., NUNEZ, L., KONG, Y., GIES, D. R., STITT, T. N., IP, N. Y. & YANCOPOULOS, G. D. (1993) Alternative forms of rat TrkC with different functional capabilities. Neuron 10, 96–974.

    PubMed  Google Scholar 

  • VLODAVSKY, I., MIAO, H. Q., MEDALION, B., DANAGHER, P. & RON, D. (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metast. Rev. 15, 17–186.

    Google Scholar 

  • WALSH, F. S. & DOHERTY, P. (1991) Glycosylphosphatidylinositol anchored recognition molecules that function in axonal fasciculation, growth and guidance in the nervous system. Cell Biol. Internatl. Rep. 15, 115– 1166.

    Google Scholar 

  • WALSH, F. S. & DOHERTY, P. (1997) Neural cell adhesion molecules of the immunoglobulin superfamily: Role in axon growth and guidance Ann. Rev. Cell Dev. Biol. 13, 42–456.

    Google Scholar 

  • WALSH, F. S., HOBBS, C., WELLS, D. J., SLATER, C. R. & FAZELI, S. (2000) Ectopic expression of NCAM in skeletal muscle of transgenic mice results in terminal sprouting at the neuromuscular junction and altered structure but not function. Mol. Cell. Neurosci. 15, 24–261.

    PubMed  Google Scholar 

  • WALSH, F. S., MEIRI, K. & DOHERTY, P. (1997) Cell signalling and CAM-mediated neurite outgrowth. Soc. Gen. Physiol. Ser. 52, 22–226.

    PubMed  Google Scholar 

  • WATANABE, H., TAKEHANA, K., DATE, M., SHINOZAKI, T. & RAZ, A. (1996) Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res. 56, 296– 2963.

    PubMed  Google Scholar 

  • WEIS, J., LIE, D. C., RAGOSS, U., ZUCHNER, S. L., SCHRODER, J. M., KARPATI, G., FARRUGGELLA, T., STAHL, N., YANCOPOULOS, G. D. & DISTEFANO, P. S. (1998) Increased expression of CNTF receptor alpha in denervated human skeletal muscle. J. Neuropath. Exp. Neurol. 57, 85– 857.

    PubMed  Google Scholar 

  • WELLS, D. G., MCKECHNIE, B. A., KELKAR, S. & FALLON, J. R. (1999) Neurotrophins regulate agrininduced postsynaptic differentiation. Proc. Natl. Acad. Sci. USA 96, 111–1117.

    PubMed  Google Scholar 

  • WIGSTON, D. J. (1990) Repeated in vivo visualization of neuromuscular junctions in adult mouse lateral gastrocnemius. J. Neurosci. 10, 175–1761.

    PubMed  Google Scholar 

  • WINES, M. M. & HALL-CRAGGS, E. C. (1986) Neuromuscular relationships in a muscle having segregated motor endplate zones. II. The response to partial denervation. J. Comp. Neurol. 249, 15–156.

    PubMed  Google Scholar 

  • XU, W., SEITER, K., FELDMAN, E., AHMED, T. & CHIAO, J. W. (1996) The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood. 87, 450–4506.

    PubMed  Google Scholar 

  • YAMADA, S., BUFFINGER, N., DIMARIO, J. & STROHMAN, R. C. (1989) Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med. Sci. Sports Exer. 21, S17–180.

    Google Scholar 

  • YOSHINOUCHI, M., MIURA, M., GAOZZA, E., LI, S. W. & BASERGA, R. (1993) Basic fibroblast growth factor stimulates DNA synthesis in cells overexpressing the insulin-like growth factor-I receptor. Mol. Endocrinol. 7, 116–1168.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur W. English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

English, A.W. Cytokines, growth factors and sprouting at the neuromuscular junction. J Neurocytol 32, 943–960 (2003). https://doi.org/10.1023/B:NEUR.0000020634.59639.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEUR.0000020634.59639.cf

Keywords

Navigation