Skip to main content
Log in

Kinetics and Mechanism of in situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The kinetic peculiarities of the thermal transformations of unsaturated metal carboxylates (transition metal acrylates and maleates as well as their cocrystallites) and properties of metal-polymer nanocomposites formed have been studied. The composition and structure of metal-containing precursors and the products of the thermolysis were identified by X-ray analysis, optical and electron microscopy, magnetic measurements, EXAFS, IR and mass spectroscopy. The thermal transformations of metal-containing monomers studied are the complex process including dehydration, solid phase polymerization, and thermolysis process which proceed at varied temperature ranges. At 200–300°C the rate of thermal decay can be described by first-order equations. The products of decompositions are nanometer-sized particles of metal or its oxides with a narrow size distribution (the mean particle diameter of 5–10nm) stabilized by the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Nardo N.J., 1994. Nanoscale characterization of surfaces and interfaces. VCH: Weinheim: (b) Nicoud J.-F. 1994. Science, 263, 636; (c) Neilson P.W., H.A. Allcock and K.J. Wynne, eds., 1994. Inorganic and Organometallic Polymers. ACS Symposium Series 572, Am. Chem. Soc. Washington, DC; (d) Bein Th., ed., 1992. Supramolecular Architecture. ACS Symp. Ser. 499, Amer. Chem. Soc. Washington, DC; (e) Jacobson A.J. and M.S. Whittingham, 1982. Intercalation Chemistry. Academic Press, New York; (f ) Natanson E.M. and Z.R Ul'berg, 1971. Kolloidnye metally i Metallopolimery (Colloidal metals and Metal-Containing Polymers). Naukova Dumka, Kiev (in Russian); (g) Laine R.M., ed., 1992. Inorganic and Organometallic Polymers with Special Properties,Vol. 206, Nato ASI Series, Kluwer, New York; (h) Hadjipanayis G.C. and G.A. Prinz, eds., 1991 Science and Technology of Nanostructured Magnetic Materials. Plenum Press, New York; (i) Pellizetti E., ed., 1996. Fine Particles Science and Technology from Micro to Nanoparticles. Kluwer Academic Publishers; The Netherlands; ( j) Sauvage J.-P., ed., 1996 Comprehensive Supromolecular Chemistry, Vol. 9. Elsevier, New York; (k) Livage J.M. Henry and C. Sanchez, 1988. Prog. Solid State Chem. 18, 259; (l) Ellsworth M.W. and B.M. Novak, 1991. J. Am. Chem. Soc. 113, 2756; (m) Glavati O.L., L.C. Polak and V.V. Schekin, 1963. Neftekhimiya 3, 905 (in Russian); (n) Chow G.-M. and K.E. Gonsalves, eds., 1996. Nanotechnology. Molecularly Designed Materials. ACS Symposium Book Series, No. 622, American Chemical Society, Washington, DC; (o) Chow G.M. and K.E. Gonsalves In: Edelstein A.S. and Cammarata R.C., eds., 1996. Nanomaterials. Synthesis, Properties and Applications. Institute of Physics Publishing, Bristol, Philadelphia, pp. 55–71.

    Google Scholar 

  2. Pomogailo A.D., 1997. Russ. Chem. Rev. 66, 679–716; Pomogailo A.D., 2000. Russ. Chem. Rev. 69; (b) Pomogailo A.D., 1994. Plat. Metal Rev. 38, 60–70; (c) Pomogailo A.D., A.S. Rozenberg and I.E. Uflyand, 2000. Metal Nanoparticles in Polymers. Khimiya, Moscow.

    Google Scholar 

  3. Napper D., 1983. Polymeric Stabilization of Colloidal Dispersion. Academic Press, London; (b) Barrett K.E.J., ed., 1975. Dispersion Polymerization in Organic Media.Willey, London; (c) Jaycock M.J. and G.D. Parfitt, 1981. Chemistry of Interfaces. Ellis Horwood, New York; (d) Deryagin B.V., 1986. Teoriya ustoichivosti kolloidov i tonikh plenok. Poverhnostnye sily (Theory of Stability of Colloids and Thin Films. Surface Forces). Nauka, Moscow; (e) Baran F., Polymersoderzhashchie dispersnye sistemy Polymer-Containing Disperse Systems. Kiev, Naukova Dumka; (f) Ur'ev N.B., 1980. Vysokontsentrirovannye dispersnye sistemy (Highly Concentrated Dispersed Systems). Khimiya, Moscow; (g) Goodwin J.W. and R. Buscall, eds., 1995. Polymer colloids Academic Press, New York; (h) Visser J., 1972. Adv. Colloid Interface Sci. 3, 331; (j) Rebinder P.A., 1978. In: Fuks G.I. ed., 1978. Izbrannye trudy. Poverhnostnye yavleniya v dispersnykh sistemakh (Selected Works. Surface Phenomena in Dispersion Media). Nauka, Moscow: (k) Parfitt G.D. and C.H. Rochester, 1983. Adsorption from Solution at the Solid/Liquid Interface. Academic Press, London; (l) Welker H., 1993. Angew. Chem. 105, 43; (m) Fojtik A., H. Weller, U. Koch and A. Henglein, 1984. Ber. Bunsenges. Phys. Chem. 88, 969; (n) Zhulina E.B., O.V. Borisov and V.A. Priamitsin, 1990. J. Colloid Interface Sci. 137, 495; Zhulina E.B., O.V. Borisov and V.A. Priamitsin, 1991. Macromolecules 24, 140.

    Google Scholar 

  4. Kargin V.A., N.A. Plate, I.A. Litvinov, V.P. Shibaev and E.G. Lur'e, 1961. Vysokomolekul. Soedinen. 3, 1091; (b) Plate N.A., V.V. Prokopenko and V.A. Kargin, 1959. Vysokomolekul. Soedinen. 1, 1713; (c) Stepuchovich A.D., A.L. Bortnichuk and E.A. Pafikov, 1962. Vysokomolekul. Soedinen. 4, 85, 182, 516, 523.

    Google Scholar 

  5. El'son V.G., 1988. Thesis in chemistry, Ph.D., Gor'kii, Gor'kii University; (b) El'son V.G., Yu.D. Semchikov, D.N. Emel'yanov and N.L. Khvatova, 1979. Vysokomolekul. Soedinen. B. 21, 609; (c) El'son V.G., Yu.D. Semchikov, N.L. Khvatova, V.G. El'son, and R.F. Galliulina, 1987. Vysokomolekul. Soedinen. A 29, 503. 517

    Google Scholar 

  6. Nakao Y., 1993. Chem. Commun. 826; Nakao M., 1995. J. Coll. Interf. Sci. 171, 386.

  7. Yanagihara N., Y. Ishii, T. Kawase, T. Kaneko, H. Horie and T. Hara, 1997. Mater. Res. Soc. Symp. Proc. 457, 469; (b) Yanagihara N., 1998. Chem. Lett. 305.

    Google Scholar 

  8. Pomogailo A.D. and V.S. Savostyanov, 1994. Synthesis and Polymerization of Metal-containing Monomers. CRCPress, Boca Raton, Ann Arbor, London, Tokyo.

    Google Scholar 

  9. Ciebien J.F., R.E. Cohen and A. Duran (in press). Supramolecular Science.

  10. Dzhardimalieva G.I., A.D. Pomogailo, V.I. Ponomarev, L.O. Atovmyan, Yu.M. Shulga and A.G. Starikov, 1988. Bull. Acad. Sci. USSR, Div. Chem. Sci. 37, 1352 (Engl. Transl.).

    Google Scholar 

  11. Porollo N.P., Z.A. Aliev, G.I. Dzhardimalieva, I.N. Ivleva, I.E. Uflyand, A.D. Pomogailo and N.S. Ovanesyan, 1997. Russ. Chem. Bull. 46, 362–370 (Engl. Transl.).

    Google Scholar 

  12. Gregg S.J. and K.Sw. Sing, 1967. Adsorption, Surface Area and Porosity, Academic Press, New York.

    Google Scholar 

  13. Sheldrick G.M., 1993. J. Appl. Cryst. 26, 593.

    Google Scholar 

  14. USSR Inventor's Certificate No. 1681340, 1991 (in Russian); (b) Chernushevich I.V., 1991. Ph.D. Phys. Thesis, Chernogolovka (in Russian).

  15. Shuvaev A.T., B.Yu. Khal'mer and T.A. Lyubeznova, 1988. Instruments and Experimental Techniques. p. 234 (in Russian); (b) Kochubei D.I., Yu.A. Babanov, K.I. Zamaraev, R.V. Verdinskii, V.L. Kraizman, G.N. Kulipanov, L.N. Mazalov, A.N. Skrinskii, V.K. Fedorov, B.Yu. Khel'mer and A.T. Shuvaev, 1988. X-ray Spectral Method for Studying Amorphous Bodies: Exafs Spectroscopy. Nauka, Sibirskoe Otdelenie, Novosibirsk (in Russian).

  16. Shulga Yu.M., O.S. Roshchupkina, G.I. Dzhardimalieva, I.V. Chernushchevich, A.F. Dodonov, Yu.V. Baldokhin, P.Ya. Kolotyrkin, A.S. Rozenberg and A.D. Pomogailo, 1993. Russ. Chem. Bull. 42, 1661–1665 (Engl. Transl.).

    Google Scholar 

  17. Shulga, Yu.M., I.V. Chernushchevich, G.I. Dzhardimalieva, O.S. Roshchupkina, A.F. Dodonov and A.D. Pomogailo, 1994. Russ. Chem. Bull. 43, 983–987.

    Google Scholar 

  18. Nakamoto K., 1986. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York.

    Google Scholar 

  19. A variety of structural functions of RCOO group of metal carboxylates is well-known. See (a) Porai-Koshits M.A., 1981. In: Kristallokhimiya, Itogi nauki i tekhniki [Crystallochemistry, Advances in Science and Technology], VINITI, Moscow, pp. 15, 13 (in Russian); (b) Mehrotra R.C. and R. Bohra, 1983. Metal Carboxylates. Academic Press, London. Depending on the peculiarity of coordination with metal atom, the carboxylate group can be mono-, di-, tri-, and tetradentate ligand.

    Google Scholar 

  20. Antsyshkina A.S., M.A. Porai-Koshits and M.G. Guseinov, 1974. Bull. Acad. Sci. USSR, Div. Chem. Sci. 33 (Engl. Transl.).

  21. Gupta M.P., and B. Mahanta, 1978. Cryst. Struct. Comm. 179.

  22. The Co—O bond lengths are in the range 0.207–0.211 nm. Maleic acid acts as the tetradentate ligand similarly to the Cu(II)-maleate complex, where the metal atom is in the five-coordination square-pyramidal surrounding (see: (a) Prout C.K., J.R. Carruthers and F.J. Rossoti, 1971. J. Chem. Soc. (A) 3342). The polyhedron is completed to the octahedron by two HO 2 molecules (O(6) and O(7) arranged in cis-orientation to each other. The third H2O molecule is the water of crystallization and, with respect to the thermal behavior, it is slower retained in the structure. An infinite hydrogen-lined chain of alternating and crystallizationwater molecules is formed due to hydrogen bonds.

  23. Figgis B.N. and G.B. Robertson, 1965. Nature 205, 694.

    Google Scholar 

  24. Long, G.J., W.N. Robinson, W.P. Tappmeyer and D.L. Bridges, 1973. J. Chem. Soc., Dalton Trans. 573.

  25. Bino A., F.A. Cotton, Z. Dori and B.W.S. Kolthammer, 1981. J. Am. Chem. Soc. 103, 5779.

    Google Scholar 

  26. Dzhardimalieva G.I. and A.D. Pomogailo, 1996. In: Metal-Containing Polymeric Materials. Pittman C.U., Ir., Carraher Ch.E. Jr., Zeldin M., Sheats J.E. and Culbertson B.M. eds. 1998. Plenum Press, New York, pp. 63–80; (b) Dzhardimalieva G.I. and A.D. Pomogailo, 1998. Macromol. Symp. 131, 19–27; Dzhardimalieva G.I. and A.D. Pomogailo, 2002. Macromol. Symp. 186, 147–153.

    Google Scholar 

  27. Electrospray mass spectrometry with the extraction of dissolved ions under atmospheric pressure (EDIAP) provides a field evaporation of ions contained in the liquid; a fraction of these ions is directed to the mass analyzer via a vacuum interface with differential evacuation. See: (a) USSR Inventor's Certificate No. 1681340, Byul. Izobr., 1991, No. 36 (in Russian); (b) Chernushevich I.V., 1991. Ph.D. Phys. Thesis, Chernogolovka (in Russian); (c) van den Bergen A., R. Colton, M. Percy and B.O. West, 1993. Inorg. Chem. 32, 3408–3411. An increase in the electric field intensity in the first step of differential pumping, where the gas pressure is 5 Torr, makes it possible the 518 controlled fragmentation of ions by their collision-induced dissociation.

  28. Alexandrova E.I., G.I. Dzhardimalieva, A.S. Rozenberg and A.D. Pomogailo, 1993. Russ. Chem. Bull. 42, 254–258 (Engl. Trans.).

    Google Scholar 

  29. Alexandrova E.I., G.I. Dzhardimalieva, A.S. Rozenberg and A.D. Pomogailo, 1993. Russ. Chem. Bull. 42, 259–264 (Engl. Trans.).

    Google Scholar 

  30. Rozenberg A.S., G.I. Dzhardimalieva and Pomogailo, 1998. Polym. Adv. Technol. 9, 527–535; (b) Pomogailo A.D., G.I. Dzhardimalieva and A.S. Rosenberg, 2002. Acta Physica Polonica 102, 135–145.

    Google Scholar 

  31. Rozenberg A.S., E.I. Alexandrova, G.I. Dzhardimalieva, A.N. Titkov and A.D. Pomogailo, 1993. Russ. Chem. Bull. 42, 1666–1672 (Engl. Trans.).

    Google Scholar 

  32. Rozenberg A.S., E.I. Alexandrova, G.I. Dzhardimalieva, N.V. Kir'ykov, P.E. Chizhov, V.I. Petinov and A.D. Pomogailo, 1995. Russ. Chem. Bull. 44, 858–866 (Engl. Trans.).

    Google Scholar 

  33. Rozenberg A.S., E.I. Alexandrova, N.P. Ivleva, G.I. Dzhardimalieva, A.V. Raevskii, O.I. Kolesova, I.E. Uflyand and A.D. Pomogailo, 1998. Russ. Chem. Bull. 47, 259–264 (Engl. Trans.).

    Google Scholar 

  34. Shuvaev, A.T., A.S. Rozenberg, G.I. Dzhardimalieva, N.P. Ivleva, V.G. Vlasenko, T.I. Nedoseikina, T.A. Lyubeznova, I.E. Uflyand, and A.D. Pomogailo, 1998. Russ. Chem. Bull. 47, 1460–1465 (Engl. Trans.); (b) Pomogailo A.D., V.G. Vlasenko, A.T. Shuvaev, A.S. Rozenberg and G.I. Dzhardiamlieva, 2002. Colloid J. 64, 472–477 (Engl. Transl.).

    Google Scholar 

  35. For additional details on thermolysis of some transition metal acrylates under thermal analysis conditions (DTA-, TG-, DTG-studies) see: (a) Wojtezak Z. and A.J. Granowski, 1983. Therm. Anal. 26, 233–239; (b) Skupinska I., H.Wilezura and H.J. Bonink, 1986. Therm. Anal. 31, 1017; (c) Wojtezak Z., 1990. J. Therm. Anal. 36, 2357–2362.

    Google Scholar 

  36. Referring was made on the base of data reported in the following works: (a) Nakamoto K., 1987. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley and Sons, New York; (b) McClusky P.H., R.L. Snyder and R.F. Condrate, 1988. J. Solid State Chem. 83, 332; v is stretching, δ – deformation, and ρω– cutter vibrations.

    Google Scholar 

  37. Lidin R.A., L.L. Andreeva and V.A. Molochko, 1987. Handbook of Inorganic Chemistry. The Constants of Inorganic Compounds. Khimiya, Moscow.

    Google Scholar 

  38. Alexandrova E.I., A.V. Raevskii, A.S. Rozenberg and A.N. Titkov, 1989. Chem. Phys. 8, 1630–1639.

    Google Scholar 

  39. Alexandrova E.I., A.V. Raevskii, A.N. Titkov and A.S. Rozenberg, 1990. Chem. Phys. 9, 1244–1249 (Engl. Trans.).

    Google Scholar 

  40. Nakanisi K., 1962. Infrared Absorption Spectroscopy. Holden Day, Inc., San Francisco.

    Google Scholar 

  41. Scarrow, R.C., M.J. Maroney, S.M. Palmer, L.Jr. Que, A.L. Roe, S.P. Salowe and J.J. Stubbe, 1987. Amer. Chem. Soc. 109, 7857.

    Google Scholar 

  42. The nonlinear fitting was performed by the Powel method of conjugated directions within the range of wave vectors k from 27 to 118 nm-1. The published values of scattering amplitudes and phases of the photoelectron wave were used for fitting. See: (a) Shuvaev A.T., B. Yu. Khal'mer and T.A. Lyubeznova, 1988. Pribory i tekhnika eksperimenta [Instruments and Experimental Techniques], p. 234 (in Russian). The leastQvalue (the best fitting)was obtained for two-sphere fitting for the model with one bridging and five O atoms of ligands. See: (b) Kochubei D.I., Yu.A. Babanov, K.I. Zamaraev, R.V. Verdinskii, V.L. Kraizman, G.N. Kulipanov, L.N. Mazalov, A.N. Skrinskii, V.K. Fedorov, B.Yu. Khel'mer and A.T. Shuvaev, 1988. Rentgenospektral'nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya [X-ray Spectral Method for Studying Amorphous Bodies: Exafs Spectroscopy], Nauka, Sibirskoe Otdelenie, Novosibirsk (in Russian).

  43. Teo B.-K. and P.A. Lee, 1979. J. Amer. Chem. Soc. 101, 7215.

    Google Scholar 

  44. Kozinkin A.V.,V.G. Vlasenko, A.T. Shuvaev, S.P. Gubin and I.A. Dubovtsev, 1996. Zh. Neorganicheskoi khimii 32, 422.

    Google Scholar 

  45. Vlasenko V.G., F.M. Ovsyanikov, A.V. Kozinkin, A.T. Shuvaev L.M. Bronstein and P.M. Baletsii, 1995. Vysokomolekul. Soedin., Ser. A and B 37, 1414.

    Google Scholar 

  46. Patron L., A. Cotescu, G. Muteanu, M. Brezeanu and E. Segal, 1986. Rev. Roum. Chem. 31, 811–816.

    Google Scholar 

  47. Chukanov, N.V., I.V. Kumpanenko, V.V. Losev and N.G. Entelis, 1981. Dokl. Chem. 261, 135–137 (Engl. transl.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomogailo, A.D., Dzhardimalieva, G.I., Rozenberg, A.S. et al. Kinetics and Mechanism of in situ Simultaneous Formation of Metal Nanoparticles in Stabilizing Polymer Matrix. Journal of Nanoparticle Research 5, 497–519 (2003). https://doi.org/10.1023/B:NANO.0000006091.92638.a5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NANO.0000006091.92638.a5

Navigation