Skip to main content
Log in

Phylogeny and Evolutionary History of the Ground Squirrels (Rodentia: Marmotinae)

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Although ground squirrels (Spermophilus) and prairie dogs (Cynomys) are among the most intensively studied groups of mammals with respect to their ecology and behavior, a well-resolved phylogeny has not been available to provide a framework for comparative and historical analyses. We used complete mitochondrial cytochrome b sequences to construct a phylogeny that includes all 43 currently recognized species in the two genera, as well as representatives of two closely related genera (Marmota and Ammospermophilus). In addition, divergence times for ground squirrel lineages were estimated using Bayesian techniques that do not assume a molecular clock. All methods of phylogenetic analysis recovered the same major clades, and showed the genus Spermophilus to be paraphyletic with respect to both Marmota and Cynomys. Not only is the phylogeny at odds with previous hypotheses of ground squirrel relationships, but it suggests that convergence in morphology has been a common theme in ground squirrel evolution. A well-supported basal clade, including Ammospermophilus and two species in the subgenus Otospermophilus, diverged from all other ground squirrels an estimated 17.5 million years ago. Between 10 and 14 million years ago, a relatively rapid diversification gave rise to lineages leading to marmots and to several distinct groups of ground squirrels. The Eurasian ground squirrels diverged from their North American relatives during this period, far earlier than previously hypothesized. This period of diversification corresponded to warming climate and spread of grasslands in western North America and Eurasia. Close geographic proximity of related forms suggests that most species evolved in or near their current ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Alroy, J. (1994). Appearance event ordination: A new biochronologic method. Paleobiology 20: 191–207.

    Google Scholar 

  • Alroy, J. (1996). Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeog. Palaeoclim. Paleoecol. 127: 285–311.

    Google Scholar 

  • Alroy, J. (2000a). North American fossil mammal systematics database. Available at http://www.nceas.ucsb.edu/∼alroy/nafmsd.html

  • Alroy, J. (2000b). North American mammalian paleofaunal database. Available at http://www.nceas.ucsb.edu/∼alroy/nampfd.html

  • Alroy, J. (2000c). New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26: 707–733.

    Google Scholar 

  • Anderson, S., Bankier, A. T., Barrell, B. G., Debruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290: 457–465.

    Google Scholar 

  • Armitage, K. B. (1981). Sociality as a life history tactic of ground squirrels. Oecologia 48: 36–49.

    Google Scholar 

  • Barash, D. P. (1989). Marmots. Social Behavior and Ecology, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Black, C. C. (1963). A review of the North American Tertiary Sciuridae. Bull. Mus. Comp. Zool., Harvard Univ. 130: 109–248.

    Google Scholar 

  • Black, C. C. (1972). Holarctic evolution and dispersal of squirrels (Rodentia:Sciuridae). Evol. Biol. 6: 305–322.

    Google Scholar 

  • Blumstein, D. T., and Armitage, K. B. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. Am. Nat. 150: 179–200.

    Google Scholar 

  • Blumstein, D. T., and Armitage, K. B. (1998). Life history consequences and social complexity: A comparative study of ground-dwelling sciurids. Behav. Ecol. 9: 8–19.

    Google Scholar 

  • Blumstein, D. T., and Armitage, K. B. (1999). Cooperative breeding in marmots. Oikos 84: 369–382.

    Google Scholar 

  • Boyer, B. B., and Barnes, B. M. (1999). Molecular and metabolic aspects of mammalian hibernation. BioScience 49: 713–724.

    Google Scholar 

  • Bryant, M. D. (1945). Phylogeny of Nearctic Sciuridae. Am. Mid. Nat. 33: 257–390.

    Google Scholar 

  • Caccone, A., Milinkovitch, M. C., Sbordoni, V., and Powell, J. R. (1997). Mitochondrial DNA rates and biogeography in European newts (Genus Euproctus). Syst. Biol. 46: 126–144.

    Google Scholar 

  • Corbet, G. B. (1978). The Mammals of the Palaearctic Region: A Taxonomic Review, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Cothran, E. G. (1983). Morphological relationships of the hybridizing ground squirrels Spermophilus mexicanus and S. tridecemlineatus. J. Mammal. 64: 591–602.

    Google Scholar 

  • Cothran, E. G., and Honeycutt, R. L. (1984). Chromosomal differentiation of hybridizing ground squirrels (Spermophilus mexicanus and S. tridecemlineatus). J. Mammal. 65: 118–122.

    Google Scholar 

  • Cothran, E. G., Zimmerman, E. G., and Nadler, C. F. (1977). Genic differentiation and evolution in the ground squirrel subgenus Ictidomys. J. Mammal. 58: 610–622.

    Google Scholar 

  • Dewalt, T. S., Sudman, P. D., Hafner, M. S., and Davis, S. K. (1993). Phylogenetic relationships of pocket gophers (Cratogeomys and Pappogeomys) based on mitochondrial DNA cytochrome b sequences. Mol. Phylogenet. Evol. 2: 193–204.

    Google Scholar 

  • Dobson, F. S. (1984). Environmental influences on sciurid mating systems. In: The Biology of Ground-Dwelling Squirrels, J. O. Murie and G. R. Michener, eds., pp. 229–249, University of Nebraska Press, Lincoln, NE.

    Google Scholar 

  • Dobson, F. S. (1985). The use of phylogeny in behavior and ecology. Evolution 39: 1384–1388.

    Google Scholar 

  • Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F., and Douzery, E. J. P. (2003). Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol. Biol. Evol. 20: 248–254.

    Google Scholar 

  • Durrant, S. D., and Hansen, R. M. (1954). Distribution patterns and phylogeny of some western ground squirrels. Syst. Zool. 3: 82–85.

    Google Scholar 

  • Elliot, L. (1978). Social behavior and foraging ecology of the Eastern Chipmunk (Tamias striatus) in the Adirondack Mountains. Smithson. Contrib. Zool. No. 265: 1–107.

    Google Scholar 

  • Felsenstein, J. (1989). PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5: 164–166.

    Google Scholar 

  • Giboulet, O., Cheret, P., Ramousse, R., and Catzeflis, F. (1997). DNA–DNA hybridization evidence for the recent origin of marmots and ground squirrels (Rodentia:Sciuridae). J. Mammal. Evol. 4: 271–284.

    Google Scholar 

  • Giterman, R. A., Sher, A., and Matthews, J. V., Jr. (1982). Comparison of the development of the steppe–tundra environments in west and east Beringia. In: Paleoecology of Beringia, D. M. Hopkins, J. V. MatthewsJr., C. E. Schweger, and S. B. Young, eds., pp. 43–73, Academic Press, New York.

    Google Scholar 

  • Goodwin, H. T. (1995). Pliocene–Pleistocene biogeographic history of prairie dogs, genus Cynomys (Sciuridae). J. Mammal. 76: 100–122.

    Google Scholar 

  • Graham, A. (1999). Late Cretaceous and Cenozoic History of North American Vegetation. Oxford University Press, New York.

    Google Scholar 

  • Gromov, I. M., and Erbaeva, M. A. (1995). Mlekopitayushchie Fauny Rossii I Sopredel'nykh Territorii [Mammal Fauna of Russia and Adjacent Territories], Zoological Institute of the Russian Academy of Sciences, Saint Petersburg.

    Google Scholar 

  • Gromov, I. M., Bibikov, D. I., Kalabukhov, N. I., and Meier, M. N. (1965). Fauna SSSR. Mlekopitayushchie [Mammals], 3(2). Nazemnye belichi (Marmotinae) [Ground squirrels...]. Nauka, Moscow–Leningrad.

    Google Scholar 

  • Hafner, D. J. (1984). Evolutionary relationships of the Nearctic Sciuridae. In: The Biology of Ground-Dwelling Squirrels, J. O. Murie, and G. R. Michener, eds., pp. 13–23, University of Nebraska Press, Lincoln, NE.

    Google Scholar 

  • Hall, E. R. (1981). The Mammals of North America, 2nd edn., Wiley, New York.

    Google Scholar 

  • Harrison, R. G. (1998). Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Endless Forms, D. J. Howard and S. H. Berlocher, eds, pp. 19–31, Oxford University Press, New York.

    Google Scholar 

  • Hershkovitz, P. (1949). Status of names credited to Oken, 1816. J. Mammal. 30: 289–301.

    Google Scholar 

  • Hoffmann, R. S., and Jones, J. K., Jr. (1970). Influence of late glacial and postglacial events on the distribution of recent mammals on the northern Great Plains. In: Pleistocene and Recent Environments of the Central Great Plains, W. DortJr. and J. K. JonesJr., eds., pp. 355–394, University of Kansas Press, Lawrence, KS.

    Google Scholar 

  • Hoffmann, R. S., Anderson, C. G., Thorington, R. W. Jr., and Heaney, L. R. (1993). Family Sciuridae. In: Mammal Species of the World, D. E. Wilson and D. M. Reeder, eds., pp. 419–465, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Holmes, W. G. (2001). The development and function of nepotism. In: Developmental Psychobiology, Vol. 13, E. Blas, ed., pp. 281–316, Plenum, New York.

    Google Scholar 

  • Hoogland, J. L. (1995). The Black-Tailed Prairie Dog, University of Chicago Press, Chicago.

    Google Scholar 

  • Hopkins, D. M. (1967). The Bering Land Bridge. Stanford University Press, Stanford, CA.

    Google Scholar 

  • Howell, A. H. (1938). Revision of the North American ground squirrels, with a classification of the North American Sciuridae. N. Am. Fauna 56: 1–256.

    Google Scholar 

  • Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian Inference of Phylogeny, Department of Biology, University of Rochester, Rochester, NY.

    Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32: 128–144.

    Google Scholar 

  • Kishino, H., Thorne, J. L., and Bruno, W. J. (2001). Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol. 18: 352–361.

    Google Scholar 

  • Korth, W. W. (1996). A new genus of prairie dog (Sciuridae, Rodentia) from the Miocene (Barstovian of Montana and Clarendonian of Nebraska) and the classification of Nearctic ground squirrels (Marmotini). Trans. Nebraska Acad. Sci. 23: 109–113.

    Google Scholar 

  • Lacey, E. A., Wieczorek, J. R., and Tucker, P. K. (1997). Male mating behavior and patterns of sperm precedence in Arctic ground squirrels. Anim. Behav. 53: 767–779.

    Google Scholar 

  • Lyapunova, E. A., and Vorontsov, N. N. (1970). Chromosomes and some issues of the evolution of the ground squirrel genus Citellus (Rodentia, Sciuridae). Experientia 26: 1033–1038.

    Google Scholar 

  • MacNeil, D., and Strobeck, C. (1987). Evolutionary relationships among colonies of Columbian ground squirrels as shown by mitochondrial DNA. Evolution 41: 873–881.

    Google Scholar 

  • Martin, A. P., and Palumbi, S. R. (1993). Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. U.S.A. 90: 4087–4091.

    Google Scholar 

  • Martin, A. P., Naylor, G. J. P., and Palumbi, S. R. (1992). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.

    Google Scholar 

  • McKenna, M. C., and Bell, S. K. (1997). Classification of Mammals Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Mercer, J. M., and Roth, V. L. (2003). The effects of Cenozoic global change on squirrel phylogeny. Science 299: 1568–1572.

    Google Scholar 

  • Michener, G. R. (1983). Kin identification, matriarchies, and the evolution of sociality in ground-dwelling sciurids. In: Recent Advances in the Study of Mammalian Behavior, J. F. Eisenberg and D. K. Kleiman, eds., pp. 528–572, Special publication No. 7, The American Society of Mammalogists.

  • Michener, G. R. (1984). Age, sex, and species differences in the annual cycles of ground-dwelling sciurids: implications for sociality. In: The Biology of Ground-Dwelling Squirrels, J. O. Murie, and G. R. Michener, eds., pp 81–107, University of Nebraska Press, Lincoln, NE.

    Google Scholar 

  • Murie, J. O., and Michener, G. R. (1984). The Biology of Ground-Dwelling Squirrels, University of Nebraska Press, Lincoln, NE.

    Google Scholar 

  • Nadler, C. F. (1966). Chromosomes and systematics of American ground squirrels of the subgenus Spermophilus. J. Mammal. 47: 579–596.

    Google Scholar 

  • Nadler, C. F., and Hoffmann, R. S. (1977). Patterns of evolution and migration in the arctic ground squirrel, Spermophilus parryii (Richardson). Canad. J. Zool. 55: 748–758.

    Google Scholar 

  • Nadler, C. F., Hoffmann, R. S., and Greer, K. (1971a). Chromosomal divergence during evolution of ground squirrel populations (Rodentia: Spermophilus). Syst. Zool. 20: 298–305.

    Google Scholar 

  • Nadler, C. F., Hoffmann, R. S., and Pizzimenti, J. J. (1971b). Chromosomes and serum proteins of prairie dogs, and a model of Cynomys evolution. J. Mammal. 52: 545–555.

    Google Scholar 

  • Nadler, C. F., Hoffmann, R. S., Vorontsov, N. N., Koeppl, J. W., Deutsch, L., and Sukernik, R. I. (1982). Evolution in ground squirrels. II. Biochemical comparisons in Holarctic populations of Spermophilus. Z. Säugetierkunde, 47: 198–215.

    Google Scholar 

  • Nadler, C. F., Lyapunova, E. I., Hoffmann, R. S., Vorontsov, N. N., Shaitorova, L. L., and Borisov, Y. M. (1984). Chromosomal evolution in Holarctic ground squirrels. II. Giemsa band homologies of chromosomes, and the tempo of evolution. Z. Säugetierkunde 49: 78–90.

    Google Scholar 

  • Nevo, E. (1999). Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence, Oxford University Press, Oxford.

    Google Scholar 

  • Ognev, S. I. (1947). Zveri SSSR i Prilezhashchikh stran. Zveri vostochnoi Evropi i severnoi Azii. Tom V. Gryzuny [Mammals of the U.S.S.R. and Adjacent Countries. Mammals of Eastern Europe and Northern Asia. Vol. V. Rodents], Academy of Sciences of the U.S.S.R., Moscow–Leningrad.

    Google Scholar 

  • Pavlinov, I. Y., Yakhontov, E. L., and Agadzhanyan, A. K. (1995). Mlekopitayushchie Evrazii. I. Rodentia. Sistematiko-geograficheskii spravochnik [Mammals of Eurasia: Systematic Geographic Reference Book], Moscow University Press, Moscow.

    Google Scholar 

  • Pielou, E. C. (1991). After the Ice Age, University of Chicago Press, Chicago.

    Google Scholar 

  • Pizzimenti, J. J. (1975). Evolution of the prairie dog genus Cynomys. Occas. Pap. Mus. Nat. Hist., Univ. Kansas 39: 1–73.

    Google Scholar 

  • Qui, Z.-D. (1991). The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China. 8. Sciuridae (Rodentia). Senkenbergiana Lethaea, 71: 223–255.

    Google Scholar 

  • Rand, D. M. (1994). Thermal habit, metabolic rate, and the evolution of mitochondrial DNA. Trends Ecol. Evol. 9: 125–131.

    Google Scholar 

  • Repenning, C. A. (1967). Palearctic–Nearctic mammalian dispersal in the late Cenozoic. In: The Bering Land Bridge, D. M. Hopkins, ed., pp 288–311, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Savage, D. E., and Russell, D. E. (1983). Mammalian Paleofaunas of the World, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Schwagmeyer, P. L. (1990). Ground squirrel reproductive behavior and mating competition: A comparative perspective. In: Contemporary Issues in Comparative Psychology, D. A. Dewsbury, ed., pp 175–196, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Schwartz, O. A., Armitage, K. B., and van Vuren, D. (1998). A 32-year demography of yellow-bellied marmots (Marmota flaviventris). J. Zool. (London) 246: 337–346.

    Google Scholar 

  • Sherman, P. W. (1977). Nepotism and the evolution of alarm calls. Science, 197: 1246–1253.

    Google Scholar 

  • Sherman, P. W., and Morton, M. L. (1984). Demography of Belding's ground squirrels. Ecology 65: 1617–1628.

    Google Scholar 

  • Sherman, P. W., and Runge, M. C. (2002). Demography of a population collapse: The northern Idaho ground squirrel (Spermophilus brunneus brunneus). Ecology 83: 2816–2831.

    Google Scholar 

  • Smith, M. F. (1998). Phylogenetic relationships and geographic structure in pocket gophers in the genus Thomomys. Mol. Phylogenet. Evol. 9: 1–14.

    Google Scholar 

  • Smith, M. F., and Patton, J. L. (1993). The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol. J. Linn. Soc. 50: 149–177.

    Google Scholar 

  • Spradling, T. A., Hafner, M. S., and Demastes, J. W. (2001). Differences in rate of cytochrome b evolution among species of rodents. J. Mammal. 82: 65–80.

    Google Scholar 

  • Stangl, F. B., Jr., and Grimes, J. V. (1987). Phylogenetic implications of comparative pelage morphology in Aplodontidae and the Nearctic Sciuridae, with observations on seasonal pelage variation. Occas. Papers, The Museum, Texas Tech Univ. 112: 1–21.

    Google Scholar 

  • Stein, B. R. (2000). Morphology of subterranean rodents. In: Life Underground, E. A. Lacey, J. L. Patton, and G. N. Cameron, eds., pp 19–61, University of Chicago Press, Chicago.

    Google Scholar 

  • Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., Fraser, D. G., Vorontsov, N. N., Hoffmann, R. S., and Braun, M. J. (1999). Molecular phylogeny of the marmots (Rodentia:Sciuridae): Tests of evolutionary and biogeographic hypotheses. Syst. Biol. 48: 715–734.

    Google Scholar 

  • Suzuki, Y., Glazko-Galina, V., and Nei, M. (2002). Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc. Natl. Acad. Sci. U.S.A. 99: 16138–16143.

    Google Scholar 

  • Swofford, D. L. (1998). PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0b, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Tan, A. M., and Wake, D. B. (1995). MtDNA phylogeography of the California newt, Taricha torosa (Caudata, Salamandridae). Mol. Phylogenet. Evol. 4: 383–394.

    Google Scholar 

  • Thomas, W. K., and Martin, S. L. (1993). A recent origin of marmots. Mol. Phylogenet. Evol. 2: 330–336.

    Google Scholar 

  • Thorne, J. L., and Kishino, H. (2002). Divergence time and evolutionary rate estimation with multilocus data. Syst. Biol. 51: 689–702.

    Google Scholar 

  • Thorne, J. L., Kishino, H., and Painter, I. S. (1998). Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15: 1647–1657.

    Google Scholar 

  • van Horne, B., Olson, G. S., Schooley, R. L., Corn, J. G., and Burnham, K. P. (1997). Effects of drought and prolonged winter on Townsend's ground squirrel demography in shrubsteppe habitats. Ecol. Mono. 67: 295–315.

    Google Scholar 

  • Vorontsov, N. N., and Lyapunova, E. A. (1970). Khromosomnie chisla i vidoobraznovanie u nazemnikh belich'ikh (Sciuridae, Xerinae et Marmotinae) Golarktiki [Chromosome numbers and species formation in ground squirrels of the Holarctic]. Byull. Mosk. Ob-va Ispyt. Prir. Otd. Biol. 75: 112–126.

    Google Scholar 

  • Vorontsov, N. N., and Lyapunova, E. A. (1972). Tsitogeneticheskie dokasatel'stya sushchestvovaniya Zakavkaska-Sonorskikh dis'unktsi arealov nekotorykh mlekopitayushchik [Cytogenetical evidence for Transcaucasian-Sonoran disjunction in ranges of certain mammals]. Zool. Zhurnal 51: 1697–1704.

    Google Scholar 

  • Vorontsov, N. N., and Lyapunova, E. A. (1984). Genetics and problems of trans-Beringian connections of Holarctic mammals. In: Beringia in the Cenozoic Era, V. L. Kontrimavichus, ed., pp. 441–463, Oxonian Press, New Delhi, India.

    Google Scholar 

  • Wilson, D. E., and Ruff, S. (eds.). (1999). The Smithsonian Book of North American Mammals, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Wolfe, J. A., and Leopold, E. B. (1967). Neogene and early Quarternary vegetation of northwestern North America and northeastern Asia. In: The Bering Land Bridge, D. M. Hopkins, ed., pp. 193–206, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Yensen, E., and Sherman, P. W. (2003). Ground squirrels: Spermophilus spp. and Ammospermophilus spp. In: Wild Mammals of North America, 2nd edn., G. Feldhamer, B. Thompson, and J. Chapman, eds., pp. 211–231, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Yensen, E., and Valdés-Alarcón, M. (1999). Family Sciuridae. In: Mamíferos del Noroeste de Mexico, S. T. Alvarez-Castañeda and J. L. Patton, eds., pp. 239–320, Centro de Investigaciones Biologicas del Noroeste, S.C., La Paz, Baja California Sur, Mexico.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, R.G., Bogdanowicz, S.M., Hoffmann, R.S. et al. Phylogeny and Evolutionary History of the Ground Squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution 10, 249–276 (2003). https://doi.org/10.1023/B:JOMM.0000015105.96065.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMM.0000015105.96065.f0

Navigation