Skip to main content
Log in

Transcriptional Control of the Cell Cycle in Mammary Gland Development and Tumorigenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Over the past several years it has become increasingly evident that normal development and cancer share many properties. Both processes involve alterations in cell proliferation and differentiation, cell death, neovascularization, and cell motility and invasion. Thus, genes involved in normal development are frequently utilized in neoplasia. During development, numerous transcriptional regulatory mechanisms are used to ensure tight control over cellular proliferation. In this review we focus on a number of transcription factor families (homeobox, STAT, and Ets), and on inhibitors of transcription factors (Id), which have been implicated in controlling the cell cycle not only in normal mammary gland development but also in breast tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. T. Lewis (2000). Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res. 2:158–169.

    Google Scholar 

  2. M. A. Dyer, F. J. Livesey, C. L. Cepko, and G. Oliver (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet. 34:53–58.

    Google Scholar 

  3. C. Abate-Shen (2002). Deregulated homeobox gene expression in cancer: Cause or consequence? Nat. Rev. Cancer 2:777–785.

    Google Scholar 

  4. J. M. Bjornsson, N. Larsson, A. C. Brun, M. Magnusson, E. Andersson, P. Lundstrom, J. Larsson, E. Repetowska, M. Ehinger, R. K. Humphries, and S. Karlsson (2003). Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol. Cell Biol. 23:3872–3883.

    Google Scholar 

  5. C. Kioussi, P. Briata, S. H. Baek, D. W. Rose, N. S. Hamblet, T. Herman, K. A. Ohgi, C. Lin, A. Gleiberman, J. Wang, V. Brault, P. Ruiz-Lozano, H. D. Nguyen, R. Kemler, C. K. Glass, A. Wynshaw-Boris, and M. G. Rosenfeld (2002). Identification of a Wnt/Dvl/beta-Catenin ≥ Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 111:673–685.

    Google Scholar 

  6. V. Moucadel, M. S. Totaro, C. D. Dell, P. Soubeyran, J. C. Dagorn, J. N. Freund, and J. L. Iovanna (2002). The homeobox gene Cdx1 belongs to the p53-p21(WAF)-Bcl-2 network in intestinal epithelial cells. Biochem. Biophys. Res. Commun. 297:607–615.

    Google Scholar 

  7. A. W. Ledford, J. G. Brantley, G. Kemeny, T. L. Foreman, S. E. Quaggin, P. Igarashi, S. M. Oberhaus, M. Rodova, J. P. Calvet, and G. B. Vanden Heuvel (2002). Deregulated expression of the homeobox gene Cux-1 in transgenic mice results in downregulation of p27(kip1) expression during nephrogenesis, glomerular abnormalities, and multiorgan hyperplasia. Dev. Biol. 245:157–171.

    Google Scholar 

  8. H. L. Ford (1998). Homeobox genes: A link between development, cell cycle, and cancer? Cell Biol. Int. 22:397–400.

    Google Scholar 

  9. R. Tupler, G. Perini, and M. R. Green (2001). Expressing the human genome. Nature 409:832–833.

    Google Scholar 

  10. F. Apiou, D. Flagiello, C. Cillo, B. Malfoy, M. F. Poupon, and B. Dutrillaux (1996). Fine mapping of human HOX gene clusters. Cytogenet. Cell Genet. 73:114–115.

    Google Scholar 

  11. K. Kawakami, S. Sato, H. Ozaki, and K. Ikeda (2000). Six family genes—Structure and function as transcription factors and their roles in development. Bioessays 22:616–626.

    Google Scholar 

  12. V. C. Bromleigh and L. P. Freedman (2000). p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev. 14:2581–2586.

    Google Scholar 

  13. K. Sawada, Y. Konishi, M. Tominaga, Y. Watanabe, J. Hirano, S. Inoue, R. Kageyama, M. Blum, and A. Tominaga (2000). Goosecoid suppresses cell growth and enhances neuronal differentiation of PC12 cells. J. Cell Sci. 113:2705–2713.

    Google Scholar 

  14. M. J. B.-G. R. Kim, W. A. Banach-Petrosky, N. Desai, Y. Wang, S. W. Hayward, G. R. Cunha, R. D. Cardiff, M. M. Shen, and C. Abate-Shen (2002). Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62:2999–3004.

    Google Scholar 

  15. R. C. Smith, D. Branellec, D. H. Gorski, K. Guo, H. Perlman, J. F. Dedieu, C. Pastore, A. Mahfoudi, P. Denefle, J. M. Isner, and K. Walsh (1997). p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes. Dev. 11:1674–1689.

    Google Scholar 

  16. T. Kawabe, A. J. Muslin, and S. J. Korsmeyer (1997). HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385:454–458.

    Google Scholar 

  17. D. L. Rossi, A. Acebron, and P. Santisteban (1995). Function of the homeo and paired domain proteins TTF-1 and Pax-8 in thyroid cell proliferation. J. Biol. Chem. 270:23139–23142.

    Google Scholar 

  18. M. Burmeister, J. Novak, M. Y. Liang, S. Basu, L. Ploder, N. L. Hawes, D. Vidgen, F. Hoover, D. Goldman, V. I. Kalnins, T. H. Roderick, B. A. Taylor, M. H. Hankin, and R. R. McInnes (1996). Ocular retardation mouse caused by Chx10 homeobox null allele: Impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12:376–384.

    Google Scholar 

  19. J. Krosl, S. Baban, G. Krosl, S. Rozenfeld, C, and G. Sauvageau (1998). Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1. Oncogene 16:3403–3412.

    Google Scholar 

  20. Y. H. Liu, Z. Tang, R. K. Kundu, L. Wu, W. Luo, D. Zhu, F. Sangiorgi, M. L. Snead, and R. E. Maxson (1999). Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: A possible mechanism for MSX2-mediated craniosynostosis in humans. Dev. Biol. 205:260–274.

    Google Scholar 

  21. M. Kobayashi, R. Toyama, H. Takeda, I. B. Dawid, and K. Kawakami (1998). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125:2973–2982.

    Google Scholar 

  22. G. Goudreau, P. Petrou, L. W. Reneker, J. Graw, J. Loster, and P. Gruss (2002). Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc. Natl. Acad. Sci. U.S.A. 99:8719–8724.

    Google Scholar 

  23. H. L. Ford, E. N. Kabingu, E. A. Bump, G. L. Mutter, and A. B. Pardee (1998). Abrogation of the G2 cell cycle checkpoint associated with overexpression of HSIX1: A possible mechanism of breast carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 95:12608–12613.

    Google Scholar 

  24. H. L. Ford, and A. B. Pardee (1999). Cancer and the cell cycle. J. Cell Biochem. (Suppl.) 32/33:166–172.

    Google Scholar 

  25. W. Zheng, L. Huang, Z. B. Wei, D. Silvius, B. Tang, and P. X. Xu (2003). The role of Six1 in mammalian auditory system development. Development 130:3989–4000.

    Google Scholar 

  26. H. Ozaki, K. Nakamura, J. I. Funahashi, K. Ikeda, G. Yamada, H. Tokano, H. O. Okamura, K. Kitamura, S. Muto, H. Kotaki, K. Sudo, R. Horai, Y. Iwakura, and K. Kawakami (2004). Six1 controls patterning of the mouse otic vesicle. Development 131:551–562.

    Google Scholar 

  27. X. Li, V. Perissi, F. Liu, D. W. Rose, and M. G. Rosenfeld (2002). Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 297:1180–1183.

    Google Scholar 

  28. X. Li, K. A. Oghi, J. Zhang, A. Krones, K. T. Bush, C. K. Glass, S. K. Nigam, A. K. Aggarwal, R. Maas, D. W. Rose, and M. G. Rosenfeld (2003). Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254.

    Google Scholar 

  29. J. Lynch, E. R. Suh, D. G. Silberg, S. Rulyak, N. Blanchard, and P. G. Traber (2000). The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J. Biol. Chem. 275:4499–4506.

    Google Scholar 

  30. T. V. Petrova, T. Makinen, T. P. Makela, J. Saarela, I. Virtanen, R. E. Ferrell, D. N. Finegold, D. Kerjaschki, S. Yla-Herttuala, and K. Alitalo (2002). Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO. J. 21:4593–4599.

    Google Scholar 

  31. J. M. Bjornsson, E. Andersson, P. Lundstrom, N. Larsson, X. Xu, E. Repetowska, R. K. Humphries, and S. Karlsson (2001). Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 98:3301–3308.

    Google Scholar 

  32. D. M. Wellik and M. R. Capecchi (2003). Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367.

    Google Scholar 

  33. H. Chen and S. Sukumar (2003). Role of homeobox genes in normal mammary gland development and breast Tumorigenesis. J. Mammary Gland Biol. Neoplasia 21:157–174.

    Google Scholar 

  34. F. Chen and M. R. Capecchi (1999). Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc. Natl. Acad. Sci. U.S.A 96:541–546.

    Google Scholar 

  35. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286:531–537.

    Google Scholar 

  36. Y. Friedmann, C. A. Daniel, P. Strickland, and C. W. Daniel (1994). Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 54:5981–5985.

    Google Scholar 

  37. A. Srebrow, Y. Friedmann, A. Ravanpay, C. W. Daniel, and M. J. Bissell (1998). Expression of Hoxa-1 and Hoxb-7 is regulated by extracellular matrix-dependent signals in mammary epithelial cells. J. Cell Biochem. 69:377–391.

    Google Scholar 

  38. A. Care, A. Silvani, E. Meccia, G. Mattia, A. Stoppacciaro, G. Parmiani, C. Peschle, and M. P. Colombo (1996). HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol. Cell Biol. 16:4842–4851.

    Google Scholar 

  39. A. Care, A. Silvani, E. Meccia, G. Mattia, C. Peschle, and M. P. Colombo (1998). Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene 16:3285–3289.

    Google Scholar 

  40. A. Care, M. Valtieri, G. Mattia, E. Meccia, B. Masella, L. Luchetti, F. Felicetti, M. P. Colombo, and C. Peschle (1999). Enforced expression of HOXB7 promotes hematopoietic stem cell proliferation and myeloid-restricted progenitor differentiation. Oncogene 18:1993–2001.

    Google Scholar 

  41. A. Care, F. Felicetti, E. Meccia, L. Bottero, M. Parenza, A. Stoppacciaro, C. Peschle, and M. P. Colombo (2001). HOXB7: A key factor for tumor-associated angiogenic switch. Cancer Res. 61:6532–6539.

    Google Scholar 

  42. E. Hyman, P. Kauraniemi, S. Hautaniemi, M. Wolf, S. Mousses, E. Rozenblum, M. Ringner, G. Sauter, O. Monni, A. Elkahloun, O. P. Kallioniemi, and A. Kallioniemi (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res. 62:6240–6245.

    Google Scholar 

  43. V. Raman, S. A. Martensen, D. Reisman, E. Evron, W. F. Odenwald, E. Jaffee, J. Marks, and S. Sukumar (2000). Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405:974–978.

    Google Scholar 

  44. G. Oliver, R. Wehr, N. A. Jenkins, N. G. Copeland, B. N. Cheyette, V. Hartenstein, S. L. Zipursky, and P. Gruss (1995). Homeobox genes and connective tissue patterning. Development 121:693–705.

    Google Scholar 

  45. H. Ohto, S. Kamada, K. Tago, S. I. Tominaga, H. Ozaki, S. Sato, and K. Kawakami (1999). Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol. Cell Biol. 19:6815–6824.

    Google Scholar 

  46. F. Relaix and M. Buckingham (1999). From insect eye to vertebrate muscle: Redeployment of a regulatory network. Genes Dev. 13:3171–3178.

    Google Scholar 

  47. C. Laclef, E. Souil, J. Demignon, and P. Maire (2003). Thymus, kidney and craniofacial abnormalities in Six1 deficient mice. Mech. Dev. 120:669–679.

    Google Scholar 

  48. A. P. Young, R. Nagarajan, and G. D. Longmore (2003). Mechanisms of transcriptional regulation by Rb-E2F segregate by biological pathway. Oncogene 22:7209–7217.

    Google Scholar 

  49. C. Laclef, G. Hamard, J. Demignon, E. Souil, C. Houbron, and P. Maire (2003). Altered myogenesis in Six1-deficient mice. Development 130:2239–2252.

    Google Scholar 

  50. K. J. Martin, E. Graner, Y. Li, L. M. Price, B. M. Kritzman, M. V. Fournier, E. Rhei, and A. B. Pardee (2001). High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood. Proc. Natl. Acad. Sci. U.S.A. 98:2646–2651.

    Google Scholar 

  51. H. L. Ford, E. Landesman-Bollag, C. S. Dacwag, P. T. Stukenberg, A. B. Pardee, and D. C. Seldin (2000). Cell cycleregulated phosphorylation of the human SIX1 homeodomain protein. J. Biol. Chem. 275:22245–22254.

    Google Scholar 

  52. D. Davidson (1995). The function and evolution of Msx genes: Pointers and paradoxes. Trends Genet 11:405–411.

    Google Scholar 

  53. G. Hu, H. Lee, S. M. Price, M. M. Shen, and C. Abate-Shen (2001). Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128:2373–2384.

    Google Scholar 

  54. I. Satokata, L. Ma, H. Ohshima, M. Bei, I. Woo, K. Nishizawa, T. Maeda, Y. Takano, M. Uchiyama, S. Heaney, H. Peters, Z. Tang, R. Maxson, and R. Maas (2000). Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat. Genet. 24:391–395.

    Google Scholar 

  55. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.

    Google Scholar 

  56. G. B. Silberstein, G. R. Dressler, and K. Van Horn (2002). Expression of the PAX2 oncogene in human breast cancer and its role in progesterone-dependent mammary growth. Oncogene 21:1009–1016.

    Google Scholar 

  57. A. Nepveu (2001). Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 270:1–15.

    Google Scholar 

  58. J. Bromberg (2000). Signal transducers and activators of transcription as regulators of growth, apoptosis and breast development. Breast. Cancer Res. 2:86–90.

    Google Scholar 

  59. J. Bromberg (2002). Stat proteins and oncogenesis. J. Clin. Invest. 109:1139–1142.

    Google Scholar 

  60. C. J. Watson (2001). Stat transcription factors in mammary gland development and tumorigenesis. J. Mammary Gland Biol. Neoplasia 6:115–127.

    Google Scholar 

  61. X. Liu, G. W. Robinson, and L. Hennighausen (1996). Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol. Endocrinol 10:1496–1506.

    Google Scholar 

  62. E. Iavnilovitch, B. Groner, and I. Barash (2002). Overex-pression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol. Cancer Res. 1:32–47.

    Google Scholar 

  63. T. Bowman, R. Garcia, J. Turkson, and R. Jove (2000). STATs in oncogenesis. Oncogene 19:2474–2488.

    Google Scholar 

  64. P. L. Welcsh, M. K. Lee, R. M. Gonzalez-Hernandez, D. J. Black, M. Mahadevappa, E. M. Swisher, J. A. Warrington, and M. C. King (2002). BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 99:7560–7565.

    Google Scholar 

  65. A. Widschwendter, S. Tonko-Geymayer, T. Welte, G. Daxenbichler, C. Marth, and W. Doppler (2002). Prognostic significance of signal transducer and activator of transcription 1 activation in breast cancer. Clin. Cancer Res. 8:3065–3074.

    Google Scholar 

  66. P. J. Real, A. Sierra, A. De Juan, J. C. Segovia, J. M. Lopez-Vega, and J. L. Fernandez-Luna (2002). Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21:7611–7618.

    Google Scholar 

  67. L. Li and P. E. Shaw (2002). Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J. Biol. Chem. 277:17397–17405.

    Google Scholar 

  68. R. Garcia, T. L. Bowman, G. Niu, H. Yu, S. Minton, C. A. Muro-Cacho, C. E. Cox, R. Falcone, R. Fairclough, S. Parsons, A. Laudano, A. Gazit, A. Levitzki, A. Kraker, and R. Jove (2001). Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499–2513.

    Google Scholar 

  69. F. Zhang, C. Li, H. Halfter, and J. Liu (2003). Delineating an oncostatin M-activated STAT3 signaling pathway that coordinates the expression of genes involved in cell cycle regulation and extracellular matrix deposition of MCF-7 cells. Oncogene 22:894–905.

    Google Scholar 

  70. S. Ren, H. R. Cai, M. Li, and P. A. Furth (2002). Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 21:4335–4339.

    Google Scholar 

  71. H. Yamashita, H. Iwase, T. Toyama, and Y. Fujii (2003). Naturally occurring dominant-negative Stat5 suppresses transcriptional activity of estrogen receptors and induces apoptosis in T47D breast cancer cells. Oncogene 22:1638–1652.

    Google Scholar 

  72. T. Oikawa and T. Yamada (2003). Molecular biology of the Ets family of transcription factors. Gene 303:11–34.

    Google Scholar 

  73. A. D. Sharrocks (2001). The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2:827–237.

    Google Scholar 

  74. V. I. Sementchenko and D. K. Watson (2000). Ets target genes: past, present and future. Oncogene 19:6533–6548.

    Google Scholar 

  75. I. Matushansky, F. Radparvar, and A. I. Skoultchi (2003). CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene 22:4143–4149.

    Google Scholar 

  76. N. Ohtani, Z. Zebedee, T. J. Huot, J. A. Stinson, M. Sugimoto, Y. Ohashi, A. D. Sharrocks, G. Peters, and E. Hara (2001). Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409:1067–1070.

    Google Scholar 

  77. C. Zhang, M. M. Kavurma, A. Lai, and L. M. Khachigian (2003). Ets-1 protects vascular smooth muscle cells from undergoing apoptosis by activating p21WAF1/Cip1: ETs-1 regulates basal and inducible p21WAF1/Cip1 transcription via distinct cis-acting elements in the p21WAF1/Cip1 promoter. J. Biol. Chem. 278:27903–27909.

    Google Scholar 

  78. Y. Miyazaki, P. Boccuni, S. Mao, J. Zhang, H. Erdjument-Bromage, P. Tempst, H. Kiyokawa, and S. D. Nimer (2001). Cyclin A-dependent phosphorylation of the ETS-related protein, MEF, restricts its activity to the G1 phase of the cell cycle. J. Biol. Chem. 276:40528–40536.

    Google Scholar 

  79. D. N. Sgouras, M. A. Athanasiou, G. J. Beal, Jr., R. J. Fisher, D. G. Blair, and G. J. Mavrothalassitis (1995). ERF: An ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 14:4781–4793.

    Google Scholar 

  80. L. Le Gallic, D. Sgouras, G. Beal, Jr., and G. Mavrothalassitis (1999). Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol. Cell Biol. 19:4121–4133.

    Google Scholar 

  81. A. Chotteau-Lelievre, R. Montesano, J. Soriano, P. Soulie, X. Desbiens, and Y. de Launoit (2003). PEA3 transcription factors are expressed in tissues undergoing branching morphogenesis and promote formation of duct-like structures by mammary epithelial cells in vitro. Dev. Biol. 259:241–257.

    Google Scholar 

  82. I. G. Maroulakou and D. B. Bowe (2000). Expression and function of Ets transcription factors in mammalian development: A regulatory network. Oncogene 19:6432–6442.

    Google Scholar 

  83. K. Kas, E. Finger, F. Grall, X. Gu, Y. Akbarali, J. Boltax, A. Weiss, P. Oettgen, R. Kapeller, and T. A. Libermann (2000). ESE-3, a novel member of an epithelium-specific ets transcription factor subfamily, demonstrates different target gene specificity from ESE-1. J. Biol. Chem. 275:2986–2998.

    Google Scholar 

  84. R. Neve, C. H. Chang, G. K. Scott, A. Wong, R. R. Friis, N. E. Hynes, and C. C. Benz (1998). The epithelium-specific ets transcription factor ESX is associated with mammary gland development and involution. FASEB. J. 12:1541–1550.

    Google Scholar 

  85. J. Zhou, A. Y. Ng, M. J. Tymms, L. S. Jermiin, A. K. Seth, R. S. Thomas, and I. Kola (1998). A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13-15, a region subject to LOH and rearrangement in human carcinoma cell lines. Oncogene 17:2719–2732.

    Google Scholar 

  86. N. A. Kurpios, N. A. Sabolic, T. G. Shepherd, G. M. Fidalgo, and J. A. Hassell (2003). Function of PEA3 Ets transcription factors in mammary gland development and oncogenesis. J. Mammary Gland Biol. Neoplasia 8:177–190.

    Google Scholar 

  87. T. Shepherd and J. A. Hassell (2001). Role of Ets transcription factors in mammary gland development and oncogenesis. J. Mammary Gland Biol. Neoplasia 6:129–140.

    Google Scholar 

  88. P.N. Span, P. Manders, J. J. Heuvel, C. M. Thomas, R. R. Bosch, L. V. Beex, and C. G. Sweep (2002). Expression of the transcription factor Ets-1 is an independent prognostic marker for relapse-free survival in breast cancer. Oncogene 21:8506–8509.

    Google Scholar 

  89. A. Ghadersohi, and A. K. Sood (2001). Prostate epithelium-derived Ets transcription factor mRNA is overexpressed in human breast tumors and is a candidate breast tumor marker and a breast tumor antigen. Clin. Cancer Res. 7:2731–2738.

    Google Scholar 

  90. M. Mitas, K. Mikhitarian, L. Hoover, M. A. Lockett, L. Kelley, A. Hill, W. E. Gillanders, and D. J. Cole (2002). Prostate-Specific Ets (PSE) factor: A novel marker for detection of metastatic breast cancer in axillary lymph nodes. Br. J. Cancer 86:899–904.

    Google Scholar 

  91. D. Scheurle, M. P. DeYoung, D. M. Binninger, H. Page, M. Jahanzeb, and R. Narayanan (2000). Cancer gene discovery using digital differential display. Cancer Res. 60:4037–4043.

    Google Scholar 

  92. R. J. Feldman, V. I. Sementchenko, M. Gayed, M. M. Fraig, and D. K. Watson (2003). Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Res. 63:4626–4631.

    Google Scholar 

  93. A. Seth and T. S. Papas (1990). The c-ets-1 proto-oncogene has oncogenic activity and is positively autoregulated. Oncogene 5:1761–1767.

    Google Scholar 

  94. A. Seth, D. K. Watson, D. G. Blair, and T. S. Papas (1989). c-ets-2 Protooncogene has mitogenic and oncogenic activity. Proc. Natl. Acad. Sci. U.S.A. 86:7833–7837.

    Google Scholar 

  95. R. Pereira, C. T. Quang, I. Lesault, H. Dolznig, H. Beug, and J. Ghysdael (1999). FLI-1 inhibits differentiation and induces proliferation of primary erythroblasts. Oncogene 18:1597–1608.

    Google Scholar 

  96. A. H. Hart, C. M. Corrick, M. J. Tymms, P. J. Hertzog, and I. Kola (1995). Human ERG is a proto-oncogene with mitogenic and transforming activity. Oncogene 10:1423–1430.

    Google Scholar 

  97. P. J. Schedin, K. L. Eckel, S. M. McDaniel, J. D. Prescott, K. S. Brodsky, J. J. Tentler, and A. Gutierrez-Hartmann (2004). ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells. Oncogene 23:1776–1779.

    Google Scholar 

  98. E. Sapi, M. B. Flick, S. Rodov, and B. M. Kacinski (1998). Ets-2 transdominant mutant abolishes anchorage-independent growth and macrophage colony-stimulating factor-stimulated invasion by BT20 breast carcinoma cells. Cancer Res. 58:1027–1033.

    Google Scholar 

  99. A. Delannoy-Courdent, V. Mattot, V. Fafeur, W. Fauquette, I. Pollet, T. Calmels, C. Vercamer, B. Boilly, B. Vandenbunder, and X. Desbiens (1998). The expression of an Ets1 transcription factor lacking its activation domain decreases uPA proteolytic activity and cell motility, and impairs normal tubulogenesis and cancerous scattering in mammary epithelial cells. J. Cell Sci. 111(Pt. 11):1521–1534.

    Google Scholar 

  100. N. Neznanov, A. K. Man, H. Yamamoto, C. A. Hauser, R. D. Cardiff, and R. G. Oshima (1999). A single targeted Ets2 allele restricts development of mammary tumors in transgenic mice. Cancer Res. 59:4242–4246.

    Google Scholar 

  101. J. P. Coppe, A. P. Smith, and P. Y. Desprez (2003). Id proteins in epithelial cells. Exp. Cell Res. 285:131–145.

    Google Scholar 

  102. H. A. Sikder, M. K. Devlin, S. Dunlap, B. Ryu, and R. M. Alani (2003). Id proteins in cell growth and tumorigenesis. Cancer Cell. 3:525–530.

    Google Scholar 

  103. A. Lasorella, T. Uo, and A. Iavarone (2001). Id proteins at the cross-road of development and cancer. Oncogene 20:8326–8333.

    Google Scholar 

  104. E. Hara, M. Hall, and G. Peters (1997). Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J. 16:332–342.

    Google Scholar 

  105. R. W. Deed, E. Hara, G. T. Atherton, G. Peters, and J. D. Norton (1997). Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation. Mol. Cell Biol. 17:6815–6821.

    Google Scholar 

  106. S. Parrinello, C. Q. Lin, K. Murata, Y. Itahana, J. Singh, A. Krtolica, J. Campisi, and P. Y. Desprez (2001). Id-1, ITF-2, and Id-2 comprise a network of helix-loop-helix proteins that regulate mammary epithelial cell proliferation, differentiation, and apoptosis. J. Biol. Chem. 276:39213–39219.

    Google Scholar 

  107. C. Q. Lin, S. Parrinello, J. Campisi, and P. Y. Desprez (1999). Regulation of mammary epithelial cell phenotypes by the helix-loop-helix protein, Id-1. Endocr. Relat. Cancer 6:49–50.

    Google Scholar 

  108. P. Y. Desprez, E. Hara, M. J. Bissell, J. Campisi (1995). Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1. Mol. Cell Biol. 15:3398–3404.

    Google Scholar 

  109. S. Mori, S. I. Nishikawa, and Y. Yokota (2000). Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. EMBO J. 19:5772–5781.

    Google Scholar 

  110. J. D. Norton, and G. T. Atherton (1998). Coupling of cell growth control and apoptosis functions of Id proteins. Mol. Cell Biol. 18:2371–2381.

    Google Scholar 

  111. R. M. Alani, J. Hasskarl, M. Grace, M. C. Hernandez, M. A. Israel, and K. Munger (1999). Immortalization of primary human keratinocytes by the helix-loop-helix protein, Id-1. Proc. Natl. Acad. Sci. U.S.A. 96:9637–9641.

    Google Scholar 

  112. A. Lasorella, R. Boldrini, C. Dominici, A. Donfrancesco, Y. Yokota, A. Inserra, and A. Iavarone (2002). Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res. 62:301–306.

    Google Scholar 

  113. C. Beger, L. N. Pierce, M. Kruger, E. G. Marcusson, J. M. Robbins, P. Welcsh, P. J. Welch, K. Welte, M. C. King, J. R. Barber, and F. Wong-Staal (2001). Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc. Natl. Acad. Sci. U.S.A. 98:130–135.

    Google Scholar 

  114. A. Swarbrick, J. Hunter, S. Lee, M. Sergio, R. L. Sutherlan, and E. A. Musgrove (2002). Id1 is a critical target of c-myc in breast cancer cells. In Molecular Biology of the Cell, 42nd American Society for Cell Biology Annual Meeting, Abstract 2438. 2002.

  115. C. Q. Lin, J. Singh, K. Murata, Y. Itahana, S. Parrinello, S. H. Liang, C. E. Gillett, J. Campisi, and P. Y. Desprez (2000). A role for Id-1 in the aggressive phenotype and steroid hormone response of human breast cancer cells. Cancer Res. 60:1332–1340.

    Google Scholar 

  116. S. F. Schoppmann, M. Schindl, G. Bayer, K. Aumayr, J. Dienes, R. Horvat, M. Rudas, M. Gnant, R. Jakesz, and P. Birner (2003). Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer. Int. J. Cancer 104:677–682.

    Google Scholar 

  117. P. Y. Desprez, T. Sumida, and J. P. Coppe (2003). helix-loop-helix proteins in mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia 8:225–239.

    Google Scholar 

  118. R. D. Coletta, K. Christensen, K. J. Reichenberger, J. Lamb, D. Micomonaco, L. Huang, D. M. Wolf, C. Müller-Tidow, T. R. Golub, K. Kawakami, and H. L. Ford. The Six1 homeoprotein stimulates tumorigenesis via reactivation of cyclin A1. Proc. Natl. Acad. Sci. U. S. A., in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide L. Ford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coletta, R.D., Jedlicka, P., Gutierrez-Hartmann, A. et al. Transcriptional Control of the Cell Cycle in Mammary Gland Development and Tumorigenesis. J Mammary Gland Biol Neoplasia 9, 39–53 (2004). https://doi.org/10.1023/B:JOMG.0000023587.40966.f6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000023587.40966.f6

Navigation