Skip to main content
Log in

Development of Mitochondrial Gene Replacement Therapy

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Many “classic” mitochondrial diseases have been described that arise from single homoplasmic mutations in mitochondrial DNA (mtDNA). These diseases typically affect nonmitotic tissues (brain, retina, muscle), present with variable phenotypes, can appear sporadically, and are untreatable. Evolving evidence implicates mtDNA abnormalities in diseases such as Alzheimer's, Parkinson's, and type II diabetes, but specific causal mutations for these conditions remain to be defined. Understanding the mtDNA genotype–phenotype relationships and developing specific treatment for mtDNA-based diseases is hampered by inability to manipulate the mitochondrial genome. We present a novel protein transduction technology (“protofection”) that allows insertion and expression of the human mitochondrial genome into mitochondria of living cells. With protofection, the mitochondrial genotype can be altered, or exogenous genes can be introduced to be expressed and either retained in mitochondria or be directed to other organelles. Protofection also delivers mtDNA in vivo, opening the way to rational development of mitochondrial gene replacement therapy of mtDNA-based diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alam, T. I., Kanki, T., Muta, T., Ukaji, K., Abe, Y., Nakayama, H., Takio, K., Hamasaki, N., and Kang, D. (2003). Nucleic Acids Res. 31, 1640–1645.

    PubMed  Google Scholar 

  • Asoh, S., Ohsawa, I., Mori, T., Katsura, K., Hiraide, T., Katayama, Y., Kimura, M., Ozaki, D., Yamagata, K., and Ohta, S. (2002). Proc. Natl. Acad. Sci. U.S.A. 99, 17107–17112.

    PubMed  Google Scholar 

  • Cao, G., Pei, W., Ge, H., Liang, Q., Luo, Y., Sharp, F. R., Lu, A., Ran, R., Graham, S. H., and Chen, J. (2002). J. Neurosci. 22, 5423–5431.

    PubMed  Google Scholar 

  • Choi, Y. S., Kim, S., Kyu, L. H., Lee, K. U., and Pak, Y. K. (2004). Biochem. Biophys. Res. Commun. 314, 118–122.

    PubMed  Google Scholar 

  • Del Gazio, V., MacKenzie, J. A., and Payne, R. M. (2003). Mol. Genet. Metab. 80, 170–180.

    PubMed  Google Scholar 

  • Del Gazio, V., and Payne, R. M. (2003). Mol. Ther. 7, 720–730.

    PubMed  Google Scholar 

  • Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A. (1994). J. Biol. Chem. 269, 10444–10450.

    PubMed  Google Scholar 

  • Dolgilevich, S., Zaidi, N., Song, J., Abe, E., Moonga, B. S., and Sun, L. (2002). Biochem. Biophys. Res. Commun. 299, 505–509.

    PubMed  Google Scholar 

  • Fisher, R. P., and Clayton, D. A. (1988). Mol. Cell Biol. 8, 3496–3509.

    PubMed  Google Scholar 

  • Ganitkevich, V. Y. (2003). Exp. Physiol. 88,91–97.

    PubMed  Google Scholar 

  • Graff, C., Bui, T. H., and Larsson, N. G. (2002). Best Pract. Res. Clin. Obstet. Gynaecol. 16, 715–728.

    PubMed  Google Scholar 

  • Gray, M. W., Burger, G., and Lang, B. F. (2001). Genome Biol. 2, RE-VIEWS1018 (2001).

  • Hajnoczky, G., Davies, E., and Madesh, M. (2003a). Biochem. Biophys. Res. Commun. 304, 445–454.

    PubMed  Google Scholar 

  • Hajnoczky, G., Csordas, G., and Yi, M. (2003b). Cell Calcium 32, 363–377.

    Google Scholar 

  • Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. Argonaute (2001). Science 293, 1146–1150.

    PubMed  Google Scholar 

  • Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G., and Dowdy, S. F. (2001). Cancer Res. 61, 474–477.

    PubMed  Google Scholar 

  • Jin, L. H., Bahn, J. H., Eum, W. S., Kwon, H. Y., Jang, S. H., Han, K. H., Kang, T. C., Won, M. H., Kang, J. H., Cho, S. W., Park, J., and Choi, S. Y. (2001). Free Radic. Biol. Med. 31, 1509–1519.

    PubMed  Google Scholar 

  • Kilic, U., Kilic, E., Dietz, G. P., and Bahr, M. (2003). Stroke 34, 1304–1310.

    PubMed  Google Scholar 

  • Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S., and Clayton, D. A. (1998). Nat. Genet. 18, 231–236.

    PubMed  Google Scholar 

  • Leifert, J. A., Harkins, S., and Whitton, J. L. (2002). Gene Ther. 9, 1422–1428 (2002).

    PubMed  Google Scholar 

  • Lescuyer, P., Strub, J. M., Luche, S., Diemer, H., Martinez, P., Van Dorsselaer, A., Lunardi, J., and Rabilloud, T. (2003). Proteomics 3, 157–167.

    PubMed  Google Scholar 

  • Margulis, L. (2001). Ann. N.Y. Acad. Sci. 929,55–70.

    PubMed  Google Scholar 

  • McFarland, R., Taylor, R. W., and Tumbull, D. M. (2002). Lancet Neurol. 1, 343–351.

    PubMed  Google Scholar 

  • Orrenius, S., Zhivotovsky, B., and Nicotera, P. (2003). Nat. Rev. Mol. Cell Biol. 4, 552–565.

    PubMed  Google Scholar 

  • Parisi, M. A., and Clayton, D. A. (1991). Science 252, 965–969.

    PubMed  Google Scholar 

  • Parisi, M. A., Xu, B., and Clayton, D. A. (1993). Mol. Cell Biol. 13, 1951–1961.

    PubMed  Google Scholar 

  • Schapira, A. H. (2000). Curr. Opin. Neurol. 13, 527–532.

    PubMed  Google Scholar 

  • Schmiedel, J., Jackson, S., Schafer, J., and Reichmann, H. (2003). J. Neurol. 250, 267–277.

    PubMed  Google Scholar 

  • Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H. E., Schonfisch, B., Perschil, I., Chacinska, A., Guiard, B., Rehling, P., Pfanner, N., and Meisinger, C. (2003). Proc. Natl. Acad. Sci. U.S.A. 100, 13207–13212.

    PubMed  Google Scholar 

  • Smaili, S. S., Hsu, Y. T., Carvalho, A. C., Rosenstock, T. R., Sharpe, J. C., and Youle, R. J. (2003). Braz. J. Med. Biol. Res. 36, 183–190.

    PubMed  Google Scholar 

  • Smaili, S. S., Hsu, Y. T., Youle, R. J., and Russell, J. T. (2000). J. Bioenerg. Biomembr. 32,35–46

    PubMed  Google Scholar 

  • Toborek, M., Lee, Y. W., Pu, H., Malecki, A., Flora, G., Garrido, R., Hennig, B., Bauer, H. C., and Nath, A. (2003). J. Neurochem. 84, 169–179.

    PubMed  Google Scholar 

  • Vandecasteele, G., Szabadkai, G., and Rizzuto, R. (2001). IUBMB. Life 52, 213–219.

    PubMed  Google Scholar 

  • Vives, E., Brodin, P., and Lebleu, B. (1997). J. Biol. Chem. 272, 16010–16017.

    PubMed  Google Scholar 

  • Wallace, D. C. (2001). Novartis. Found. Symp. 235, 247–263.

    PubMed  Google Scholar 

  • Wender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T., Steinman, L., and Rothbard, J. B. (2000). Proc. Natl. Acad. Sci. U.S.A. 97, 13003–13008.

    PubMed  Google Scholar 

  • Zeviani, M., and Carelli, V. (2003). Curr. Opin. Neurol. 16, 585–594.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.M., Bennett, J.P. Development of Mitochondrial Gene Replacement Therapy. J Bioenerg Biomembr 36, 387–393 (2004). https://doi.org/10.1023/B:JOBB.0000041773.20072.9e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOBB.0000041773.20072.9e

Navigation