Skip to main content
Log in

An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We report an automated procedure for high-throughput NMR resonance assignment for a protein of known structure, or of an homologous structure. Our algorithm performs Nuclear Vector Replacement (NVR) by Expectation/Maximization (EM) to compute assignments. NVR correlates experimentally-measured NH residual dipolar couplings (RDCs) and chemical shifts to a given a priori whole-protein 3D structural model. The algorithm requires only uniform 15N-labelling of the protein, and processes unassigned HN-15N HSQC spectra, HN-15N RDCs, and sparse HN-HN NOE's (d NNs). NVR runs in minutes and efficiently assigns the (HN,15N) backbone resonances as well as the sparse d NNs from the 3D 15N-NOESY spectrum, in O(n 3) time. The algorithm is demonstrated on NMR data from a 76-residue protein, human ubiquitin, matched to four structures, including one mutant (homolog), determined either by X-ray crystallography or by different NMR experiments (without RDCs). NVR achieves an average assignment accuracy of over 99%. We further demonstrate the feasibility of our algorithm for different and larger proteins, using different combinations of real and simulated NMR data for hen lysozyme (129 residues) and streptococcal protein G (56 residues), matched to a variety of 3D structural models. Abbreviations: NMR, nuclear magnetic resonance; NVR, nuclear vector replacement; RDC, residual dipolar coupling; 3D, three-dimensional; HSQC, heteronuclear single-quantum coherence; HN, amide proton; NOE, nuclear Overhauser effect; NOESY, nuclear Overhauser effect spectroscopy; d NN, nuclear Overhauser effect between two amide protons; MR, molecular replacement; SAR, structure activity relation; DOF, degrees of freedom; nt., nucleotides; SPG, Streptococcal protein G; SO(3), special orthogonal (rotation) group in 3D; EM, Expectation/Maximization; SVD, singular value decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Hashimi, H., Gorin, A., Majumdar, A., Gosser, Y. and Patel, D. (2002) J. Mol. Biol., 318, 637–649.

    Google Scholar 

  • Al-Hashimi, H. and Patel, D. (2002) J. Biomol. NMR, 22, 1–8.

    Google Scholar 

  • Altschul, S., Gish, W., Miller, W., Myers, E. and Lipman, D. (1990) J. Mol. Biol., 215, 403–410.

    Google Scholar 

  • Andrec, M., Du, P. and Levy, R. (2001) J. Biomol. NMR, 21, 335–347.

    Google Scholar 

  • Annila, A., Aitio, H., Thulin, E. and T., D. (1999) J. Biomol. NMR, 14, 223–230.

    Google Scholar 

  • Artymiuk, P.J., Blake, C.C.F., Rice, D.W. and Wilson, K.S. (1982) Acta Crystallogr. B Biol. Crystallogr., 38, 778.

    Google Scholar 

  • Babu, C. R., Flynn, P.F. and Wand, A.J. (2001) J. Am. Chem. Soc., 123, 2691.

    Google Scholar 

  • Bailey-Kellogg, C., Widge, A., Kelley III, J.J., Berardi, M., Bushweller, J. and Donald, B. (2000) J. Comput. Biol., 7, 537–558.

    Google Scholar 

  • Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I. and Bourne, P. (2000) Nucl. Acids Res., 28, 235–242.

    Google Scholar 

  • Blundell, T., Sibanda, B., Sternberg, M. and Thornton, J. (1987) Nature, 326, 347–352.

    Google Scholar 

  • Chen, Y., Reizer, J., Saier Jr., M.H., Fairbrother, W.J. and Wright, P.E. (1993) Biochemistry, 32, 32–37.

    Google Scholar 

  • Chou, J., Li, S. and Bax, A. (2000) J. Biomol. NMR, 18, 217–227.

    Google Scholar 

  • Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001) Introduction to Algorithms, 2nd edn., The MIT Press, Cambridge, MA, chapter 5, pp. 109–110.

    Google Scholar 

  • Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836–6837.

    Google Scholar 

  • Cross, A.D.J. and Hancock, E.R. (1998) IEEE Trans. Pattern Anal. Machine Intell., 20, 1236–1253.

    Google Scholar 

  • Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 2142–2143.

    Google Scholar 

  • Dempster, A., Laird, N. and Rubin, D. (1977) J. Roy. Stat. Soc., Ser. B, 39, 1–38.

    Google Scholar 

  • Diamond, R. (1974) J Mol. Biol., 82, 371–391.

    Google Scholar 

  • Fejzo, J., Lepre, C., Peng, J., Bemis, G., Ajay, Murcko, M. and Moore, J. (1999) Chem. Biol., 6, 755–769.

  • Fetrow, J. and Bryant, S. (1993) Bio/Technology, 11, 479–484.

    Google Scholar 

  • Fiaux, J., Bertelsen, E.B., Horwich, A.L. and Wüthrich, K. (2002) Nature, 418, 207–211.

    Google Scholar 

  • Fowler, C., Tian, F., Al-Hashimi, H.M. and Prestegard, J.H. (2000) J. Mol. Biol., 304, 447–460.

    Google Scholar 

  • Gallagher, T., Alexander, P., Bryan, P. and Gilliland, G.L. (1994) Biochemistry, 33, 4721–4729.

    Google Scholar 

  • Gemmecker, G., Jahnke, W. and Kessler, H. (1993) J. Am. Chem. Soc., 115, 11620–11621.

    Google Scholar 

  • Girard, E., Chantalat, L., Vicat, J. and Kahn, R. (2001) Acta Crystallogr. D Biol. Crystallogr., 58, 1–9.

    Google Scholar 

  • Gnu (2002) The GNU General Public License, http://www.gnu.org/licenses/licenses.html

  • Greer, J. (1991) Meth. Enzymol., 202, 239–252.

    Google Scholar 

  • Grishaev, A. and Llinas, M. (2002) PNAS, 99, 6707–6712.

    Google Scholar 

  • Gronenborn, A.M., Filpula, D.R., Essig, N.Z., Achari, A., Whitlow, M., Wingfield, P.T. and Clore, G.M. (1991) Science, 253, 657.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 627–638.

    Google Scholar 

  • Harris, R. (2002) The Ubiquitin NMR Resource Page, BBSRC Bloomsbury Center for Structural Biology http://www.biochem.ucl.ac.uk/bsm/nmr/ubq/index.html

  • Hoch, J., Burns, M. M. and Redfield, C. (1990) In Frontiers of NMR in Molecular Biology, Alan R. Liss, Inc., NY, pp. 167–175.

    Google Scholar 

  • Hus, J., Marion, D. and Blackledge, M. (2000) J. Mol. Biol., 298, 927–936.

    Google Scholar 

  • Hus, J., Prompers, J. and Bruschweiler, R. (2002) J. Magn. Reson., 157, 119–125.

    Google Scholar 

  • Johnson, E., Lazar, G.A., Desjarlais, J.R. and Handel, T.M. (1999) Struct. Fold Des., 7, 967–976.

    Google Scholar 

  • Johnson, M., Srinivasan, N., Sowdhamini, R. and Blundell, T. (1994) Mol. Biochem. 29, 1–68.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.

    Google Scholar 

  • Kuhn, H. (1955) Nav. Res. Logist. Quart., 2, 83–97.

    Google Scholar 

  • Kurinov, I.V. and Harrison, R.W. (1995) Acta Crystallogr. D Biol. Crystallogr., 51, 98–109.

    Google Scholar 

  • Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1999) J. Am. Chem. Soc., 121, 2337–2338.

    Google Scholar 

  • Langmead, C.J. and Donald, B.R. (2003) In Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB), Stanford University, Palo Alto, CA (August 11–14), pp. 209–217.

  • Langmead, C.J., Yan, A.K., Wang, L., Lilien, R.H. and Donald, B.R. (2003) In Proceedings of the 7th Ann. Intl. Conf. on Research in Comput. Biol. (RECOMB) Berlin, Germany, April 10–13, pp. 176–187.

  • Lathrop, R. and Smith, T. (1996) J. Mol. Biol., 255, 641–665.

    Google Scholar 

  • Lim, K., Nadarajah, A., Forsythe, E.L. and Pusey, M.L. (1998) Acta Crystallogr. D Biol. Crystallogr., 54, 899–904.

    Google Scholar 

  • Losonczi, J., Andrec, M., Fischer, W. and J.H., P. (1999) J Magn. Reson., 138, 334–342.

    Google Scholar 

  • Meiler, J., Peti, W. and Griesinger, C. (2000) J. Biomol. NMR, 17, 283–294.

    Google Scholar 

  • Mueller, G., Choy, W., Yang, D., Forman-Kay, J., Venters, R. and Kay, L. (2000) J. Mol. Biol., 300, 197–212.

    Google Scholar 

  • Neal, S., Nip, A.M., Zhang, H. and Wishart, D.S. (2003) J. Biomol. NMR, 26, 215–240.

    Google Scholar 

  • Oki, H., Matsuura, Y., Komatsu, H. and Chernov, A. A. (1999) Acta Crystallogr. D Biol. Crystallogr., 55, 114.

    Google Scholar 

  • Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334–12341.

    Google Scholar 

  • Palmer, A.G. (1997) Curr. Opin. Struct. Biol., 7, 732–737.

    Google Scholar 

  • Ramage, R., Green, J., Muir, T.W., Ogunjobi, O.M., Love, S. and Shaw, K. (1994) J. Biochem., 299, 151–158.

    Google Scholar 

  • Redfield, C., Hoch, J. and Dobson, C. (1983) FEBS Lett., 159, 132–136.

  • Rohl, C. and Baker, D. (2002) J. Am. Chem. Soc., 124, 2723–2729.

    Google Scholar 

  • Rossman, M. and Blow, D. (1962) Acta Crystallogr., 15, 24–31.

    Google Scholar 

  • Sali, A., Overington, J., Johnson, M. and Blundell, T. (1990) Trends Biochem. Sci., 15, 235–240.

    Google Scholar 

  • Saupe, A. (1968) Angew. Chem., 7, 97–112.

    Google Scholar 

  • Schneider, D., Dellwo, M. and Wand, A.J. (1992) Biochemistry, 31, 3645–3652.

    Google Scholar 

  • Schwalbe, H., Grimshaw, S.B., Spencer, A., Buck, M., Boyd, J., Dobson, C.M., Redfield, C. and Smith, L.J. (2001) Protein Sci., 10, 677–688.

    Google Scholar 

  • Seavey, B., Farr, E., Westler, W. and Markley, J. (1991) J. Biomol. NMR, 1, 217–236.

    Google Scholar 

  • Shuker, S.B., Hajduk, P.J., Meadows, R.P. and Fesik, S.W. (1996) Science, 274, 1531–1534.

    Google Scholar 

  • Tian, F., Valafar, H. and Prestegard, J. H. (2001) J. Am. Chem. Soc., 123, 11791–11796.

    Google Scholar 

  • Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.

    Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.

    Google Scholar 

  • Vaney, M.C., Maignan, S., Ries-Kautt, M. and Ducruix, A. (1996) Acta Crystallogr. D Biol. Crystallogr., 52, 505–517.

    Google Scholar 

  • Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531–544.

    Google Scholar 

  • Wang, L. and Donald, B.R. (2004) J. Biomol. NMR, in press.

  • Weber, P.L., Brown, S.C. and Mueller, L. (1987) Biochemistry, 26, 7282–7290.

    Google Scholar 

  • Wedemeyer, W.J., Rohl, C.A. and Scheraga, H.A. (2002) J. Biomol. NMR, 22, 137–151.

    Google Scholar 

  • Xu, X. and Case, D. (2001) J. Biomol. NMR, 21, 321–333.

    Google Scholar 

  • Xu, Y., Xu, D., Crawford, O.H., Einstein, J.R. and Serpersu, E. (2000) Proc. RECOMB, pp. 299–307.

  • Yan, A., Langwead, C. and Donald, B.R. (2003) A Probability-Based Similarity Measure for Saupe Alignment Tensors with Applications to Residual Dipolar Couplings in NMR Structural Biology. Technical Report No. TR2003-474, Dartmouth Computer Science Department, http://www.cs.dartmouth.edu/reports/abstracts/TR2003-474/

  • Zweckstetter, M. (2003) J. Biomol. NMR, 27, 41–56.

    Google Scholar 

  • Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791–3792.

    Google Scholar 

  • Zweckstetter, M. and Bax, A. (2001) J. Am. Chem. Soc., 123, 9490–9491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Randall Donald.

Additional information

This work is supported by grants to B.R.D. from the National Institutes of Health (GM-65982) and the National Science Foundation (IIS-9906790, EIA-0305444, and EIA-9802068)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langmead, C.J., Donald, B.R. An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J Biomol NMR 29, 111–138 (2004). https://doi.org/10.1023/B:JNMR.0000019247.89110.e6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000019247.89110.e6

Keywords

Navigation