Skip to main content
Log in

The effect of firing temperature, preparation technique and composition on the electrical properties of the nickel cobalt oxide series Ni x Co1 − x O y

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The spinel NiCo2O4 and the materials within the Ni-Co oxide series have well established applications in electrochemistry. However, the importance of the electrical conductivity of these materials and the consequences of the choice of preparation technique and firing regime are often overlooked.

In this paper the effect of thermal treatment on the formation of the NiCo2O4 phase, its structure and electrical properties are investigated. Given the selection of an appropriate firing regime, a range of preparation techniques (thermal decomposition, cryochemical, spray pyrolysis and several precipitation methods) are investigated for the resultant electrical, structural and morphological properties. Finally, having selected an appropriate preparation procedure, the entire range of Ni-Co compositions is investigated with respect to the phases formed and their electrical properties.

The formation of pure NiCo2O4 in a narrow range of firing temperatures is highlighted and the temperature of 375°C is identified as being the most suitable. Besides morphological and granular concerns regarding the selection of the preparation procedure, the importance of the formation of the NiCo2O4 phase for the attainment of high electrical conductance is illustrated. Furthermore, the existence of the NiCo2O4 phase in compositions considerably outside of this stoichiometry is noted, and the presence of this phase in the attainment of high electrical conduction is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. King and A. C. C. Tseung, Electrochimica Acta 19 (1974) 485.

    Google Scholar 

  2. A. C. C. Tseung and S. Jasem, ibid. 22 (1977) 31.

    Google Scholar 

  3. Y. E. Roginskaya, O. V. Morozova, E. N. Lubnin, Y. E. Ulitina, G. V. Lopukhova and S. Trasatti, Langmuir 13 (1997) 4621.

    Google Scholar 

  4. M. R. Gennero De Chialvo and A. C. Chialvo, Electrochimica Acta 38 (1993) 2247.

    Google Scholar 

  5. N. Heller-Ling, M. Prestat, J. L. Gautier, J. F. Koenig, G. Poillerat and P. Chartier, ibid. 42 (1997) 197.

    Google Scholar 

  6. R. N. Singh, J. P. Pandey, N. K. Singh, B. Lal, P. Chartier and J. F. Koenig, ibid. 45 (2000) 1911.

    Google Scholar 

  7. P. Cox and D. Pletcher, J. Mater. Sci. 9 (1974) 1393.

    Google Scholar 

  8. P. Cox and D. Pletcher, J. Appl Electrochem. 21 (1991) 11.

    Google Scholar 

  9. M. R. Tarasevich, G. I. Zakharkin, V. F. Makardei and A. M. Khutornoi, Zhurnal Prikladnoi Khimii. 49 (1976) 1205.

    Google Scholar 

  10. E. Rios, N. Nguyen-Cong, J. F. Marco, J. R. Gancedo, P. Chartier and J. L. Gautier, Electrochimica Acta 45 (2000) 4431.

    Google Scholar 

  11. M. Balasubramanian, X. Sun, X. Q. Yang and J. McBreen, J. Electrochem. Soc. 147 (2000) 2903.

    Google Scholar 

  12. C. C. Chang, N. Scarr and P. N. Kumta, Solid State Ionics 112 (1998) 329.

    Google Scholar 

  13. H. J. Kweon, G. B. Kim, H. S. Kim, S. S. Nam and D. G. Park, J. Power Sources 83 (1999) 83.

    Google Scholar 

  14. O. N. Knop, K. I. G. Reid, Sutarno and Y. Nakagawa, Can. J. Chem. 46 (1968) 3463.

    Google Scholar 

  15. N. N. Greenwood, in “Ionic Crystals, Lattice Defects and Nonstoichiometry” (Butterworths, London, 1968).

    Google Scholar 

  16. A. M. Trunov, V. A. Presnov, M. V. Uminskii, O. F. Rakityanskaya, T. S. Bakutina and A. I. Kotseruba, Elektrokhimiya 11 (1975) 552.

    Google Scholar 

  17. W. J. King, Ph.D. Thesis, The City University, London, 1972.

  18. O. N. Kovalenko, P. G. Tsyrul'nikov, A. V. Golovin, V. V. Popvskii and L. M. Plyasova, Kinetika I Kataliz. 21 (1980) 1570.

    Google Scholar 

  19. J. Kelly, D. B. Hibbert and A. C. C. Tesung, J. Mater. Sci. 13 (1978) 1053.

    Google Scholar 

  20. D. B. Hibbert and A. C. C. Tseung, ibid. 14 (1979) 2665.

    Google Scholar 

  21. P. Peshev, A. Toshev and G. Gyurov, Mat. Res. Bull. 24 (1989) 33.

    Google Scholar 

  22. D. G. Klissurski and E. L. Uzunova, Chem. Mater. 3 (1991) 1060.

    Google Scholar 

  23. M. Hamdani, J. F. Koenig and P. Chartier, J. Appl. Electrochem. 18 (1988) 568.

    Google Scholar 

  24. R. N. Singh, J. F. Koenig, G. Poillerat and P. Chartier, J. Electrochem. Soc. 137 (1990) 1408.

    Google Scholar 

  25. S. K. Tiwari, S. Samuel, R. N. Singh, G. Poillerat, R. F. Koenig and P. Chartier, Int. J. Hydrogen Energy 20 (1995) 9.

    Google Scholar 

  26. P. Nkeng, J. F. Koenig, J. L. Gautier, P. Chartier and G. Poillerat, J. Electroanal. Chem. 402 (1996) 81.

    Google Scholar 

  27. M. El Baydi, S. K. Tiwari, R. N. Singh, J. L. Rehspringer, P. Chartier, J. F. Koenig and G. Poillerat, J. Solid State Chem. 116 (1995) 157.

    Google Scholar 

  28. J. G. Kim, D. L. Pugmire, D. Battaglia and M. A. Langell, Appl. Surf. Sci. 165 (2000) 70.

    Google Scholar 

  29. J. Haenen, W. Visscher and E. Barendrecht, J. Electroanal. Chem. 208 (1986) 297.

    Google Scholar 

  30. L. A. De Faria, M. Prestat, J. F. Koenig, P. Chartier and S. Trasatti, Electrochimica Acta 44 (1998) 1481.

    Google Scholar 

  31. K. Krezhov, P. Konstantinov, E. Svab and D. MeszÁros, Mater. Sci. Forum. 321–324 (2000) 785.

    Google Scholar 

  32. C. C. Hu, Y. S. Lee and T. C. Wen, Mater. Chem. Phys. 48 (1997) 264.

    Google Scholar 

  33. S. Trasatti, Electrochimica Acta 29 (1984) 1503.

    Google Scholar 

  34. S. Trasatti, Electrochimica Acta 36 (1991) 225.

    Google Scholar 

  35. D. Dollimore, G. A. Gamlen and T. J. Taylor, Thermochimica Acta. 51 (1981) 269.

    Google Scholar 

  36. JCPDS Powder Diffraction Reference Card 20-0781 (NiCo2O4) (1965).

  37. JCPDS Powder Diffraction Reference Card 22-1189 (NiO) (1965).

  38. JCPDS Powder Diffraction Reference Card 9-418 (Co3O4) (1965).

  39. JCPDS Powder Diffraction Reference Card 10-0188 (NiCoO2) (1965).

  40. H. M. Carapuca, M. I. Da Silva Pereira and F. M. A. Da Costa, Mat. Res. Bul. 25 (1990) 1183.

    Google Scholar 

  41. R. Garavaglia, C. M. Mari and S. Trasatti, Surf. Techn. 19 (1983) 197.

    Google Scholar 

  42. H. T. S. Britton, J. Chem. Soc. 125 (1925) 2110.

    Google Scholar 

  43. C. Bocca, A. Barbucci, M. Delucchi and G. Cerisola, Int. J. Hydrogen Energy 23 (1998) 1.

    Google Scholar 

  44. R. B. Heslop and P. L. Robinson, in “Inorganic Chemistry” (Elsevier Publishing, London, 1963) p. 500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Lapham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapham, D.P., Tseung, A.C.C. The effect of firing temperature, preparation technique and composition on the electrical properties of the nickel cobalt oxide series Ni x Co1 − x O y . Journal of Materials Science 39, 251–264 (2004). https://doi.org/10.1023/B:JMSC.0000007751.14703.4b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000007751.14703.4b

Keywords

Navigation