Skip to main content
Log in

Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: laboratory experiments in a grid-stirred tank

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Samples of the cyanobacterium Microcystis aeruginosa from a small pond were used in laboratory experiments with a grid-stirred tank to quantify the effect of turbulent mixing on colony size. Turbulent dissipation in the tank was varied from 10−9 m2 s−3 to 10−4 m2 s−3, covering the range of turbulence intensities experienced by M. aeruginosa colonies in the field and exceeding the maximum dissipation by two orders of magnitude. Large colonies broke up into smaller colonies during the experiments; the mass fraction of colonies with diameter less than 200 μm increased over time. Colony disaggregation was observed to increase with turbulent dissipation. The maximum stable colony diameter across all experiments was in the range 220–420 μm. The overall change in size distribution during the experiments was relatively small, and the colony size distribution remained very broad throughout the experiments. Since colony size affects migration velocity, susceptibility to grazing and surface area to volume ratios, more work is needed to determine how to best represent this broad size distribution when modelling M. aeruginosa populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alldredge, A. L., T. C. Granata, C. C. Gotschalk & T. D. Dickey, 1990. The physical strength of marine snow and its implications for particle disaggregation in the ocean. Limnology & Oceanography 35: 1415–1428.

    Google Scholar 

  • Brookes, J. D., G. G. Ganf, D. Green & J. Whittington, 1999. The influence of light and nutrients on buoyancy, filament aggregation and flotation of Anabaena circinalis. Journal of Plankton Research 21: 327–341.

    Article  Google Scholar 

  • DeSilva, I. P. D. & H. J. S. Fernando, 1994. Oscillating grids as a source of nearly isotropic turbulence. Physics of Fluids 6: 2455–2464.

    Article  Google Scholar 

  • Falconer, I. R., 1999. An overview of problems caused by toxic blue-green algae (Cyanobacteria) in drinking and recreational water. Environmental Toxicology 14: 5–12.

    Article  CAS  Google Scholar 

  • Fernando, H. J. S. & I. P. D. DeSilva, 1993. Note on secondary flows in oscillating-grid, mixing-box experiments. Physics of Fluids A 5: 1849–1851.

    Article  CAS  Google Scholar 

  • Ganf, G. G., 1974. Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). Journal of Ecology 62: 611–629.

    Google Scholar 

  • Ganf, G. G. & R. L. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake. Journal of Ecology 70: 829–844.

    Google Scholar 

  • Gibson, C. H. & W. H. Thomas, 1995. Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein. Journal of Geophysical Research 100: 24841–24846.

    Article  Google Scholar 

  • Grossart, H. & M. Simon, 1993. Limnetic macroscopic organic aggregates (lake snow): Occurrence, characteristics, and microbial dynamics in Lake Constance. Limnology & Oceanography 38: 532–546.

    Google Scholar 

  • Hill, P. S., 1992. Reconciling aggregation theory with observed vertical fluxes following phytoplankton blooms. Journal of Geophysical Research 97: 2295–2308.

    Article  Google Scholar 

  • Hill, P. S., G. Voulgaris & J. H. Trowbridge, 2001. Controls on floc size in a continental shelf bottom boundary layer. Journal of Geophysical Research 106: 9543–9549.

    Article  Google Scholar 

  • Hogg, R. V. & J. Ledolter, editors 1987. Engineering Statistics. Macmillan Publishing Company, New York.

    Google Scholar 

  • Humphries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: The role of cell buoyancy. Limnology & Oceanography 33: 79–91.

    Article  Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Ibelings, B. W., 1992. Cyanobacterial waterblooms: the role of buoyancy in watercolumns of varying stability. PhD thesis. The University of Amsterdam.

  • Ibelings, B. W., L. R. Mur, R. Kinsman & A. E. Walsby, 1991a. Microcystis changes its buoyancy in response to the average irradiance in the surface mixed layer. Archiv für Hydrobiologie 120: 385–401.

    Google Scholar 

  • Ibelings, B. W., L. R. Mur & A. E. Walsby, 1991b. Diurnal changes in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. Journal of Plankton Research 13: 419–436.

    Google Scholar 

  • Jackson, G. A. & A. B. Burd, 1998. Aggregation in the marine environment. Environmental Science & Technology 32: 2805–2814.

    CAS  Google Scholar 

  • Jackson, G. A. & S. Lochmann, 1993. Modelling coagulation of algae in marine ecosystems. In J. Buffle & H. P. van Leeuwen (ed.) Environmental Particles Vol. 2. Lewis Publishers, Florida: 387–414.

    Google Scholar 

  • Kirk, J. T. O., 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. II. spherical cells. New Phytologist 75: 21–36.

    Google Scholar 

  • Kit, E. L. G., E. J. Strang & H. J. S. Fernando, 1997. Measurement of turbulence near shear-free density interfaces. Journal of Fluid Mechanics 334: 293–314.

    Article  Google Scholar 

  • Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Quantifying potential benefits to Microcystis aeruginosa through disentrainment by buoyancy within an embayment of a freshwater river. Journal of Freshwater Ecology 16: 151–157.

    Google Scholar 

  • Moisander, P. H., J. L. Hench, K. Kononen & H. W. Paerl, 2002. Small-scale shear effects on heterocystous cyanobacteria. Limnology & Oceanography 47: 108–119.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia, in press.

  • Noh, Y. & H. J. S. Fernando, 1993. The role of molecular diffusion in the deepening of the mixed layer. Dynamics of Atmospheres & Oceans 17: 187–215.

    Google Scholar 

  • O’Brien, K. R., 2002. The effects of turbulent mixing on the vertical distribution and biomass of phytoplankton populations. PhD thesis. The University of Western Australia.

  • Oliver, R. L. & G. G. Ganf, 2000. Freshwater blooms. In Whitton, B. A. & M. Potts (ed.) The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 149–194.

    Google Scholar 

  • Padisák, J., É. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-an experimental study. Hydrobiologia 500: 243–257.

    Article  Google Scholar 

  • Parker, D. S., W. J. Kaufman & D. Jenkins, 1972. Floc breakup in turbulent flocculation processes. Journal of the Sanitary Engineering Division of the American Society of Civil Engineers 98: 79–99.

    Google Scholar 

  • Regel, R. H., J. D. Brookes, G. G. Ganf & R.W. Griffiths, 2003. The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain. Hydrobiologia, in press.

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge UK.

    Google Scholar 

  • Reynolds, C. S., 1997a. The control and management of cyanobacterial blooms. In Australian Society of Limnologists 36th Congress Symposia: 6-22.

  • Reynolds, C. S., 1997b. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Germany.

    Google Scholar 

  • Reynolds, C. S., 1998. Plants in motion: Physical-biological interaction in the plankton. In J. Imberger (ed.) Physical Processes in Lakes and Oceans. American Geophysical Union Washington, U.S.A.: 535–560.

    Google Scholar 

  • Reynolds, C. S., R. L. Oliver & A. E. Walsby, 1987. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine & Freshwater Research 21: 379–390.

    Article  Google Scholar 

  • Robarts, R. D. & T. Zohary, 1984. Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeesport Dam, South Africa). Journal of Ecology 72: 1001–1017.

    Google Scholar 

  • Smith, D. K.W. & J. A. Kitchener, 1978. The strength of aggregates formed in flocculation. Chemical Engineering Science 33: 1631–1636.

    Article  CAS  Google Scholar 

  • Tennekes, H. & J. L. Lumley, 1994. A first course in turbulence (2nd ed.). MIT Press, Boston USA.

    Google Scholar 

  • Thomas, W. H. & C. H. Gibson, 1990. Effects of small scale turbulence on microalgae. Journal of Applied Phycology 2: 71–77.

    Google Scholar 

  • Visser, P. M., J. Passarge & L. R. Mur, 1997. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349: 99–109.

    Article  Google Scholar 

  • Waite, A. M., S. Gallagher & H. G. Dam, 1997. New measurements of phytoplankton aggregation in a flocculator using videography and image analysis. Marine Ecology Progress Series 155: 77–88.

    Google Scholar 

  • Wallace, B. B. & D. P. Hamilton, 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnology & Oceanography 44: 273–381.

    Article  Google Scholar 

  • Wüest, A. & A. Lorke, 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Brien, K.R., Meyer, D.L., Waite, A.M. et al. Disaggregation of Microcystis aeruginosa colonies under turbulent mixing: laboratory experiments in a grid-stirred tank. Hydrobiologia 519, 143–152 (2004). https://doi.org/10.1023/B:HYDR.0000026501.02125.cf

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000026501.02125.cf

Navigation