Skip to main content
Log in

The Hopf Property for Subgroups of Hyperbolic Groups

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A group is said to be Hopfian if every surjective endomorphism of the group is injective. We show that finitely generated subgroups of torsion-free hyperbolic groups are Hopfian. Our proof generalizes a theorem of Sela (Topology 35 (2) 1999, 301–321).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyndon, R. C. and Shupp, P. E.: Combinatorial Group Theory, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  2. Ceccherini-Silberstein, T. G., Grigorchuk, R. I. and Scarabotti, F.: Analytical methods in group theory: hopfianity of free groups, Preprint.

  3. Mal'cev, B.: On the faithful representation of infinite groups by matrices, Math. Sb. (N.S.) 8(50) (1940), 405–422; English translation in Amer. Math. Soc. Transl. 45(2) (1965),1-18.

    Google Scholar 

  4. Geoghegan, R., Mihalik, M., Sapir M. and Wise, D.: Ascending HNN extensions of finitely generated free groups are Hopfian, Proc. London. Math. Soc. 33 (2001), 292–298.

    Google Scholar 

  5. Neumann, B.: A two-generator group isomorphic to a proper factor group, J. London. Math. Soc. 25 (1950), 247–248.

    Google Scholar 

  6. Higman, G.: A finitely related group with an isomorphic proper factor group, J. London. Math. Soc. 26 (1951), 59–61.

    Google Scholar 

  7. Baumslag, G. and Solitar, D.; Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201.

    Google Scholar 

  8. Kurosh, A. G.: The Theory of Groups, 3rd edn, 1967, (in Russian).

  9. Meier, D.: Non-Hopfian groups, J. London Math. Soc. 26(2) (1982), 265–270.

    Google Scholar 

  10. Wise, D.: A non-Hopfian automatic group, J. Algebra 180 (1996), 845–847.

    Google Scholar 

  11. Sela, Z. Endomorphisms of hyperbolic groups I: The Hopf property, Topology 38(2) (1999), 301–321.

    Google Scholar 

  12. Rips, E.: Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), 45–47.

    Google Scholar 

  13. Sela, Z.: Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II, GAFA 7 (1997), 561–593.

  14. Kapovich, I. and Wise, D.: On the failure of the co-Hopf property for subgroups of wordhyperbolic groups), Israel J. Math. 122(2001), 125–147.

    Google Scholar 

  15. Bestvina, M.: Degeneration of hyperbolic space, Duke Math. J. 56 (1988), 143–161.

    Google Scholar 

  16. Paulin, F.: Outer automorphisms of hyperbolic groups and small actions on R-trees, In: R. C. Alperin (ed.), Arboreal Group Theory, MSRI Publ. 19, Amer. Math. Soc., Providence, 1991, pp. 331–343.

    Google Scholar 

  17. Paulin, F.: Topologie de Gromové quivariante, structures hyperboliques et arbres ré els,Invent. Math. 94 (1988), 53–80.

    Google Scholar 

  18. Bestvina, M. and Feighn, M.: Stable actions of groups on real trees, Invent. Math. 121 (1995), 287–321.

    Google Scholar 

  19. Rips, E. and Sela, Z.: Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. 146 (1997), 53–104.

    Google Scholar 

  20. Sela, Z.: Acylindrical accessibility for groups, Invent. Math. 129(1997), 527–565.

    Google Scholar 

  21. Alonso, J. M., Brady, T., Cooper, D. et al.: Notes on word hyperbolic groups, In: E. Ghys, A. Haefliger and A. Verjovsky (eds), Group Theory from a Geometrical Viewpoint, ICTP, Trieste, 1990, pp. 3-63.

  22. Coornaert, M., Delzant, T. and Papadopoulos, A.: Geometrie et theorie des groupes, Lecture Notes in Math. 1441, Springer-Verlag, New York, 1990.

    Google Scholar 

  23. Ol'shanskii, A. Yu.: Hyperbolic groups, manuscript.

  24. Bridson, M. R. and Swarup, G. A.: On Hausdorff-Gromov convergence and a theorem of Paulin, Enseign Math. 40(1994), 267–289.

    Google Scholar 

  25. Gromov, M.: Groups of polynomial growth and expanding maps, Publ. Math. IHES 53 (1981), 53–78.

    Google Scholar 

  26. Paulin, F.: Actions de groupes sur les arbres, Sémi Bourbaki 94 (1997), 97–137.

    Google Scholar 

  27. Gaboriau, D., Levitt, G. and Paulin, F.: Pseudogroups of isometries of R and Rips' theorem on free actions on R-trees, Israel. J. Math. 87 (1994), 403–428.

    Google Scholar 

  28. Guirardel, V. Approximations of stable actions on R-trees, Comment. Math. Helv. 73 (1998), 89–121.

    Google Scholar 

  29. Bestvina, M.: R-trees in topology, geometry, and group theory, Preprint.

  30. Kapovich, M.: Hyperbolic Manifolds and Discrete Groups: Lectures on Thurston's Hyperbolization, Progr. in Math., Birkhäuser, Basel, 2000.

    Google Scholar 

  31. Rips, E.: Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition Proc. ICM Zurich, 1994, pp. 595-600.

  32. Dunwoody, M. J. and Sageev, M. E.: JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), 25–44.

    Google Scholar 

  33. Fujiwara, K. and Papasoglu, P.: JSJ-decompositions of finitely presented groups and complexes of groups, Preprint.

  34. Bowditch, B. H.: Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1988), 145–186.

    Google Scholar 

  35. Forester, M.: On uniqueness of JSJ decompositions of finitely generated groups, Comment. Math. Helv., in press.

  36. Serre, J. P. Trees, Springer-Verlag, Berlin, 1980.

  37. Gromov, M.: Hyperbolic groups, In: S. M. Gersten (ed.), Essays in Group Theory, MSRI Ser. 8, Springer-Verlag, New York, pp. 75-263.

  38. Higman, G., Neumann, B. H. and Neumann, H.: Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254.

    Google Scholar 

  39. Kargapolov, M. and Merzliakov, Yu.: Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979 (English edition).

    Google Scholar 

  40. Rips, E. and Sela, Z.: Structure and rigidity in hyperbolic groups I, GAFA 4 (1994), 337–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bumagina, I. The Hopf Property for Subgroups of Hyperbolic Groups. Geometriae Dedicata 106, 211–230 (2004). https://doi.org/10.1023/B:GEOM.0000033859.35966.4a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GEOM.0000033859.35966.4a

Navigation