Skip to main content
Log in

Homing and Daytime Tidal Movements of Juvenile Snappers (Lutjanidae) between Shallow-Water Nursery Habitats in Zanzibar, Western Indian Ocean

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

We studied daily tidal movements of tagged juvenile Lutjanus fulviflamma and Lutjanus ehrenbergii between two adjacent habitats, a subtidal channel and shallow tidal notches in the fossil reef terrace, in a shallow marine bay on Zanzibar Island (Tanzania). Due to a large tidal range, the notches were dry at low-tide and were only accessible to the snappers at high-tide. Of the resighted individuals, 48% showed clear movement between the two habitats, orientated in a direction perpendicular to the tidal currents. Individuals resighted more than once showed site fidelity, indicating homing in both the channel and the notches. We suggest that a significant part of this population of juvenile snappers may move from a low-tide resting habitat to a high-tide resting habitat during the daytime, perhaps to avoid predation by larger predators that may enter the channel at high-tide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beets, J. 1997. Effects of a predatory fish on the recruitment and abundance of Caribbean coral reef fishes. Mar. Ecol. Prog. Ser. 148: 11-21.

    Google Scholar 

  • Cocheret de la Morinière, E., B.J.A. Pollux, I. Nagelkerken & G. van der Velde. 2002. Post-settlement life cycle migration patterns and habitat preferences of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55: 309-321.

    Google Scholar 

  • Forward, R.B. Jr. & R.A. Tankersley. 2001. Selective tidal-stream transport of marine animals. Oceanogr. Mar. Biol. Annu. Rev. 39: 305-353.

    Google Scholar 

  • Friedlander, A.M., J.D. Parrish & R.C. Defelice. 2002. Ecology of the introduced snapper Lutjanus kasmira (Forsskal) in the reef fish assemblage of a Hawaiian bay. J. Fish Biol. 60: 28-48.

    Google Scholar 

  • Gibson, R.N. 1999. Movement and homing in intertidal fishes. pp. 97-125. In: M.H. Horn, K.L.M. Martin & M.A. Chotkowski (ed.) Intertidal Fishes, Life in Two Worlds, Academic Press, San Diego.

    Google Scholar 

  • Gillanders, B.M., K.W. Able, J.A. Brown, D.B. Eggleston & P.F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries. Mar. Ecol. Prog. Ser. 247: 281-295.

    Google Scholar 

  • Griffiths, M.H. & C.G. Wilke. 2002. Long-term movement patterns of five temperate-reef fishes (Pisces: Sparidae): Implications for marine reserves. Mar. Freshw. Res. 53: 233-244.

    Google Scholar 

  • Hamilton, H.G.H. & W.H. Brakel. 2003. Structure and coral fauna of East African reefs. Bull. Mar. Sci. 34: 248-266.

    Google Scholar 

  • Hindell, J.S., G.P. Jenkins & M.J. Keough. 2000. Evaluating the impact of predation by fish on the assemblage structure of fishes associated with seagrass (Heterozostera tasmanica) (Martens ex Ascherson) den Hartog, and unvegetated sand habitats. J. Exp. Mar. Biol. Ecol. 255: 153-174.

    Google Scholar 

  • Kramer, D.L. & M.R. Chapman. 1999. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fish. 55: 65-79.

    Google Scholar 

  • McClanahan, T.R. & S. Mangi. 2000. Spillover of exploitable fishes from a marine park and its effect on the adjacent fishery. Ecol. Appl. 10: 1792-1805.

    Google Scholar 

  • Morrison, M.A., M.P. Francis, B.W. Hartill & D.M. Parkinson. 2002. Diurnal and tidal variation in the abundance of the fish fauna of a temperate tidal mudflat. Estuar. Coast. Shelf Sci. 54: 793-807.

    Google Scholar 

  • Nagelkerken, I. & G. van der Velde. 2002. Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curaçao (Netherlands Antilles)? Mar. Ecol. Prog. Ser. 245: 191-204.

    Google Scholar 

  • Nagelkerken, I., M. Dorenbosch, W.C.E.P. Verberk, E. Cocheret de la Morinière & G. van der Velde. 2000a. Day-night shifts of fishes between shallow-water biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Mar. Ecol. Prog. Ser. 194: 55-64.

    Google Scholar 

  • Nagelkerken, I., M. Dorenbosch, W.C.E.P. Verberk, E. Cocheret de la Morinière & G. van der Velde. 2000b. Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar. Ecol. Prog. Ser. 202: 175-193.

    Google Scholar 

  • Ogden, J.C. & N.S. Buckman. 1973. Movements, foraging groups, and diurnal migrations of the striped parrotfish Scarus croicensis Bloch (Scaridae). Ecology 54: 589-596.

    Google Scholar 

  • Ogden, J.C. & P.R. Ehrlich. 1977. The behaviour of heterotypic resting schools of juvenile grunts (Pomadasyidae). Mar. Biol. 42: 273-280.

    Google Scholar 

  • Rangeley, R.W. & D.L. Kramer. 1995. Tidal effects on habitat selection and aggregation by juvenile pollock Pollachius virens in the rocky intertidal zone. Mar. Ecol. Prog. Ser. 126: 19-29.

    Google Scholar 

  • Roberts, C.M. 1997. Connectivity and management of Caribbean marine reserves. Science 278: 1454-1457.

    Google Scholar 

  • Robertson, A.I. & N.C. Duke. 1990. Mangrove fish-communities in tropical Queensland, Australia: Spatial and temporal patterns in densities, biomass and community structure. Mar. Biol. 104: 369-379.

    Google Scholar 

  • Ross, S.W. & J.E. Lancaster. 2002. Movements and site fidelity of two juvenile fish species using surf zone nursery habitats along the southeastern North Carolina coast. Environ. Biol. Fish. 63: 161-172.

    Google Scholar 

  • Rowley, R.J. 1994. Case studies and reviews: Marine reserves in fisheries management. Aquat. Conserv. Mar. Freshw. Ecosyst. 4: 233-254.

    Google Scholar 

  • Sedberry, G.R. & N. Cuellar. 1993. Planktonic and benthic feeding by the reef-associated vermilion snapper, Rhomboplites aurorubens (Teleostei, Lutjanidae). Fish. Bull. 91: 699-709.

    Google Scholar 

  • Sheaves, M. & B. Molony. 2000. Short-circuit in the mangrove food chain. Mar. Ecol. Prog. Ser. 199: 97-109.

    Google Scholar 

  • Vance, D.J., M.D.E. Haywood, D.S. Heales, R.A. Kenyon, N.R. Loneragan & R.C. Pendrey. 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Mar. Ecol. Prog. Ser. 131: 115-124.

    Google Scholar 

  • Watson, M., J.L. Munro & F.R. Gell. 2002. Settlement, movement and early juvenile mortality of the yellowtail snapper Ocyurus chrysurus. Mar. Ecol. Prog. Ser. 237: 247-256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Nagelkerken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorenbosch, M., Verweij, M.C., Nagelkerken, I. et al. Homing and Daytime Tidal Movements of Juvenile Snappers (Lutjanidae) between Shallow-Water Nursery Habitats in Zanzibar, Western Indian Ocean. Environmental Biology of Fishes 70, 203–209 (2004). https://doi.org/10.1023/B:EBFI.0000033336.10737.f5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EBFI.0000033336.10737.f5

Navigation