Skip to main content
Log in

Genetic diversity and population structure of Eugenia dysenterica DC. (``cagaiteira'' – Myrtaceae) in Central Brazil: Spatial analysis and implications for conservation and management

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Studies about the organization of the genetic variability and population structure in natural plant populations are used to support conservation and management programs. Among the Cerrado fruit tree species that possess potential economic importance in agriculture, the “Cagaiteira” (Eugenia dysenterica DC. – Myrtaceae), deserves an special position. We obtained information about allele and genotypic frequencies in 10 local populations, situated up to 250 km apart, from six isozymes that furnished a total of 8 loci. The average within-population fixation index (f) was 0.337, and the out crossing rate was 0.835, suggesting a mixed mating system for this species, which seems to be preferably alogamous. Based on genetic diversity and analysis of variance techniques, a high degree of population differentiation (θP = 0.154) was found, in comparison with other tropical tree species. Genetic divergence, analyzed by Nei's genetic distances, clustered with UPGMA and ordinated by non-metric multidimensional scaling, showed spatial patterns of clusters of local populations. Explicit spatial analyses, using Mantel tests and boundary tests, basically confirmed these patterns and revealed a complex pattern of genetic variation in geographic space. The intercept of the multivariate spatial correlograms was around 120 km, an indication of the minimum distance between samples needed to conserve genetic diversity among samples. This spatial scale can be used to define population genetics units for conservation programs or to establish sampling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida SP, Silva JÁ da, Ribeiro, JF (1987) Aproveitamento alimentar de espécies nativas dos cerrados: araticum, barÚ, cagaita e jatobá. EMBRAPA-CPAC, Planaltina.

    Google Scholar 

  • Avise JC (2000) Phylogeography. Harvard University Press, Cambridge, Massachussets.

    Google Scholar 

  • Avise JC, Hamrick JL (1996) Conservation Genetics: Case Histories from Nature. Chapman &; Hall, London.

    Google Scholar 

  • Borém A (1998) Melhoramento de Plantas, 2nd edn. Editora da UFV, Viçosa.

    Google Scholar 

  • Carthew SM (1993) Population genetic structure of Banksia spinulosa. Heredity, 70(6), 566–573.

    Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution, 15, 290–295.

    Article  PubMed  Google Scholar 

  • Dias LAS, Kageyama PY (1991) Variação genética em espécies arbóreas e conseqüências para o melhoramento florestal. Agrotrópica, 3(3), 119–127.

    Google Scholar 

  • Diniz-Filho JAF, Telles MPC (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv. Biol., 16, 924–935.

    Article  Google Scholar 

  • Donadio LC, Martins ABG, Valente JP (1992) Fruticultura Tropical. FUNEP, Jaboticabal.

    Google Scholar 

  • Felsenstein J (1993) PHYLIP 3.5Phylogeny Inference Package. University of Washington, Seattle.

    Google Scholar 

  • Ferreira MB, Cunha LHdeS (1980) Dispersão de Plantas lenhosas de cerrado — germinação e desenvolvimento. Inf. Agropec., 6(6), 27–32.

    Google Scholar 

  • Fonseca Agda, Muniz IAdeF (1992) Informações sobre a cultura de espécies frutíferas nativas da região de cerrado. Inf. Agropec., 16(173), 12–17.

    Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Molecular Ecology, 10, 2741–2752.

    PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt JW (1990) Allozyme diversity in plant species. In: Plant Population Genetics, Breeding and Genetic Resources (eds. Brown ADH, Cleg MT, Kahler AL, Weir BS), pp. 43–63. Sinauer, Suderland, Massachusetts.

    Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann. Rev. Ecol. Syst., 10, 173–200.

    Article  Google Scholar 

  • Hamrick JL, Loveless MD (1989) The genetic structure of tropical tree populations: associations with reproductive biology. In: The Evolutionary Ecology of Plants (eds. Bock JH, Linhart YB), pp. 129–146. Westview Press, Boulder.

    Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Population Dynamics in Ecological Space and Time (eds. Rhodes JrOE, Chesser RK, Smith MH). Chicago, The University of Chicago Press.

    Google Scholar 

  • Hedrick PW (2001) Conservation genetics: Where are we now. Trends in Ecology and Evolution, 16, 629–638.

    Article  Google Scholar 

  • Heywood JS, Fleming TH (1986) Patterns of allozyme variation in three tropical species of Piper. Biotropica, 18, 208–213.

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Lessa E (1990) Multidimensional analysis of geographic genetic structure. Syst. Zool., 39, 242–252.

    Article  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.html

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst., 15, 65–95.

    Article  Google Scholar 

  • Lynch M (1996) A quantitative-genetic perspective on conservation issues. In: Conservation Genetics: Case Histories from Nature (eds. Avise JC, Hamrick JL), pp. 471–501. Chapman &; Hall, London.

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology and Evolution, 15, 290–295.

    Google Scholar 

  • Manly BFJ (1985) The Statistics of Natural Selection. Chapman &; Hall, London.

    Google Scholar 

  • Manly BFJ (1986) Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Pop. Ecol., 28, 201–218.

    Google Scholar 

  • Manly BFJ (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman &; Hall, London.

    Google Scholar 

  • Moran GF, Muona O, Bell JC (1989) Breeding systems and genetic diversity in Acacia auriculiformis and A. crassicarpa. Biotropica, 21, 250–256.

    Article  Google Scholar 

  • Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends in Ecology and Evolution 9, 373–375.

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Amer. Nat., 106, 283–292.

    Article  Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. TREE, 14(4), 140–145.

    PubMed  Google Scholar 

  • Paetkau D (1999) Using genetic to identify intraspecific conservation units: A critique of current proposals. Conserv. Biol., 13, 1507–1509.

    Article  Google Scholar 

  • Petit RJ, Mousadik Ael, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv. Biol., 12, 844–855.

    Article  Google Scholar 

  • Pitel JA, Cheliak WM (1984) Effect of Extraction Buffers on Characterization of Isoenzymes from Vegetative Tissues of five Conifer Species; a User's Manual. National Forestry Institute, Canadian Forestry Service, Petawawa.

    Google Scholar 

  • Proença CEB, Gibbs PE (1994) Reproductive biology of eight sympatric Myrtaceae from Central Brazil. New Phytol., 126, 343–354.

    Article  Google Scholar 

  • Ritland K (1990) A series of FORTRAN computer programs for estimating plant mating systems. Journal of Heredity, 81, 235–237.

    Google Scholar 

  • Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity, 47(1), 35–52.

    Google Scholar 

  • Rodrigues FM, Diniz-filho JAF (1998) Hierarchical strtucture of genetic distances: Effects of matriz size, spatial distribuition and correlation strtucture among gene frequencies. Genetics and Molecular Biology 21(2), 233–240.

    Google Scholar 

  • Rohlf FJ (1989) NTSYS-Pc: Numerical Taxonomy and Multivariate Analysis System. Exeter Publishers, New York.

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst.Zool., 35, 627–632.

    Article  Google Scholar 

  • Sokal RR (1979) Ecological parameters inferred from spatial correlograms. In: Contemporary Quantitative Ecology and Related Econometrics (eds. Patil GP, Rosensweig, ML), pp. 167–196. International Co-operative Publishing House, Maryland.

    Google Scholar 

  • Sokal RR (1986) Spatial data analysis and historical processes. In: Data Analysis and Informatics IV. (eds. Diday E et al.), pp. 29–43. Science Publishers, Amsterdam.

    Google Scholar 

  • Sokal RR, Oden NL (1978a) Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc., 10, 199–228.

    Google Scholar 

  • Sokal RR, Oden NL (1978b) Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc., 10, 229–249.

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogeny inference. In: Molecular Systematics, 2nd edn. (eds. Hillis DM, Moritz C, Marble BK), pp. 407–514. Sinauer Associates, Sunderland, Massachussets.

    Google Scholar 

  • Telles MPC, Silva RSM, Chaves LJ, Coelho ASG, Diniz-Filho JAF (2001) Divergência entre subpopulações de cagaiteira (Eugenia dysenterica) em resposta a padrões edáficos e distribuição espacial. Pesq. Agropec. Bras., 36, 1387–1394.

    Article  Google Scholar 

  • Wartenberg D (1989) SAAP: Spatial Autocorrelation Analysis Program. Exeter Publishers, New York.

    Google Scholar 

  • Weir BS (1996) Genetic Data Analysis II. Sinauer Associates, Sunderland, Massachussets.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alexandre Felizola Diniz-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Campos Telles, M.P., Coelho, A.S.G., Chaves, L.J. et al. Genetic diversity and population structure of Eugenia dysenterica DC. (``cagaiteira'' – Myrtaceae) in Central Brazil: Spatial analysis and implications for conservation and management. Conservation Genetics 4, 685–695 (2003). https://doi.org/10.1023/B:COGE.0000006124.55109.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000006124.55109.5e

Navigation