Skip to main content
Log in

Effect of Phase Changes on Metal‐Particle Combustion Processes

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

This paper summarizes a series of experimental studies addressing combustion of single metal particles. Sets of free‐falling monodisperse molten metal droplets were formed at repeatable initial temperatures and velocities in a pulsed microarc discharge ignited between a cold tool cathode and a consumable wire anode. The droplets formed in oxygenated environments immediately ignited and burned, while their temperature histories were studied using optical pyrometry. Burning particles were quenched at different combustion times using techniques providing variable cooling rates. Analyses of the quenched samples were used to recover the evolution of burning particle compositions for different metals. Experiments were conducted with Al, Mg, Zr, Ti, Ta, W, Mo, Fe, and Cu particles. In addition, similar combustion experiments were carried out with boron particles produced using an oxygen‐acetylene torch melting an edge of a vibrating boron filament. Most of the combustion experiments were conducted in air, while argon–oxygen, helium–oxygen, and carbon‐dioxide environments were also used in some tests. A limited number of experiments on aluminum‐particle combustion were conducted in microgravity. The experiments were aimed at identifying correlations between the burning particle temperature and composition histories. Dissolution of oxygen and other gases was observed to occur within the burning metal, leading to phase changes coinciding with sudden changes in metal combustion regimes. Equilibrium metal–gas phase diagrams were used to interpret the experimentally observed metal combustion behavior. Based on the experimental results, an expanded mechanism of metal combustion was suggested, emphasizing reactions and phase changes occurring within the burning metal in addition to reactions occurring on and above the metal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. A. Brzustowski and I. Glassman, “Vapor-phase diffusion flames in magnesium and aluminum combustion. 1. Analytical study,” in: H. G. Wolfhard, I. Glassman, and L. Green (eds.), Heterogeneous Combustion, Academic Press, New York (1964), pp. 75-115.

    Google Scholar 

  2. A. L. Breiter, V. M. Mal'tsev, and E. I. Popov, “Models of metal ignition,” Combust. Expl. Shock Waves, 13, No. 4, 475-484 (1977).

    Google Scholar 

  3. E. W. Price and R. K. Sigman, “Combustion of aluminized solid propellants,” in: V. Yang, T. B. Brill, and Wu-Zhen Ren (eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, Ch. 2.18. AIAA Inc., Reston, VA (2000), pp. 663-687.

    Google Scholar 

  4. A. Maček, “Fundamentals of combustion of single aluminum and beryllium particles,” in: Proc. 11th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh, PA (1967), pp. 203-217.

    Google Scholar 

  5. A. Maček and J. M. Semple, “Combustion of boron particles at atmospheric pressure,” Combust. Sci. Technol., 1, No. 3, 181-191 (1969).

    Google Scholar 

  6. L. S. Nelson, D. E. Rosner, S. C. Kurzius, and H. S. Levine, “Combustion of zirconium droplets in oxygen/rare gas mixtures. Kinetics and mechanism,” in: Proc. 12th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh, PA (1968), pp. 59-70.

    Google Scholar 

  7. J. L. Prentice, “Combustion of pulse-heated single particles of aluminum and beryllium,” Combust. Sci. Technol., 1, No. 5, 385-398 (1970).

    Google Scholar 

  8. R. Bhatia and W. A. Sirignano, “Convective burning of a droplet containing a single metal particle,” Combust. Flame, 93, No. 3, 215-229 (1993).

    Google Scholar 

  9. E. Ya. Shafirovich and U. I. Goldshleger, “Pulsating combustion of magnesium particles in CO2,” Combust. Sci. Technol., 135, Nos. 1-6, 241-254 (1998).

    Google Scholar 

  10. P. Bucher, L. Ernst, F. L. Dryer, et al., “Detailed studies on the flame structure of aluminum particle combustion,” in: V. Yang, T. B. Brill, and Wu-Zhen Ren(eds.), Progress in Astronautics and Aeronautics, Vol. 185: Solid Propellant Chemistry, Combustion, and Motor Interior Ballistics, AIAA Inc., Reston, VA (2000), pp. 689-722.

    Google Scholar 

  11. T. A. Brzustowski and I. Glassman, “Spectroscopic investigation of metal combustion,” IAA Accession No. A65-10970 (1964).

  12. A. M. Mellor and I. Glassman, “A physical criterion for metal ignition,” Paper WSS-CI 64-20, Western States Sect. Combust. Inst. (1964).

  13. C. K. Law, “Simplified theoretical model for the vaporphase combustion of metal particles,” Combust. Sci. Technol., 7, No. 5, 197-212 (1973).

    Google Scholar 

  14. C. K. Law, “Models for metal particle combustion with extended flame zones,” Combust. Sci. Technol., 12, Nos. 4-6, 113-124 (1976).

    Google Scholar 

  15. S. R. Turns, S. C. Wong, and E. Ryba, “Combustion of aluminum-based slurry agglomerates,” Combust. Sci. Technol., 54, Nos. 1-6, 299-318 (1987).

    Google Scholar 

  16. K. P. Brooks and M. W. Beckstead, “Dynamics of aluminum combustion,” J. Propuls. Power, 11, No. 4, 769-780 (1995).

    Google Scholar 

  17. A. V. Suslov, E. L. Dreizin, and M. A. Trunov, “Formation of monodisperse refractory metal particles by an impulse discharge,” Powder Technol., 74, No. 1, 23-30 (1993).

    Google Scholar 

  18. A. V. Suslov, E. L. Dreizin, and M. A. Trunov, “Study of combustion of monodisperse metallic particles produced by impulse arc,” Combust. Expl. Shock Waves, 26, No. 4, 394-396 (1990).

    Google Scholar 

  19. E. L. Dreizin, A. V. Suslov, and M. A. Trunov, “Temperature jumps in free metal particle combustion,” Combust. Sci. Technol., 87, Nos. 1-6, 45-58 (1992).

    Google Scholar 

  20. E. L. Dreizin, A. V. Suslov, and M. A. Trunov, “General trends in metal particle heterogeneous combustion,” Combust. Sci. Technol., 90, Nos. 1-4, 79-99 (1993).

    Google Scholar 

  21. E. L. Dreizin and M. A. Trunov, “Surface phenomena in aluminum combustion,” Combust. Flame, 101, No. 3, 378-382 (1995).

    Google Scholar 

  22. E. L. Dreizin, “Experimental study of stages in aluminum particle combustion in air,” Combust. Flame, 105, No. 4, 541-556 (1996).

    Google Scholar 

  23. I. E. Molodetsky, E. L. Dreizin, and C. K. Law, “Evolution of particle temperature and internal composition for zirconium burning in air,” in: Proc. 26th Symp. (Int.) on Combustion, Vol. 2, The Combustion Inst., Pittsburgh, PA (1996), pp. 1919-1927.

    Google Scholar 

  24. I. E. Molodetsky and E. L. Dreizin, “High-temperature oxygen dissolution in liquid zirconium,” in: Materials Research Society Symposium Proceedings 418 (Decomposition, Combustion, and Detonation Chemistry of Energetic Materials) (1996), pp. 195-200.

  25. I. E. Molodetsky, E. L. Dreizin, E. P. Vicenzi, and C. K. Law, “Phases of titanium combustion in air,” Combust. Flame, 112, 522-532 (1998).

    Google Scholar 

  26. E. L. Dreizin, “On the mechanism of asymmetric aluminum particle combustion,” Combust. Flame, 117, 841-850(1999).

    Google Scholar 

  27. S. Rossi, E. L. Dreizin, and C. K. Law, “Combustion of aluminum particles in carbon dioxide,” Combust. Sci. Technol., 164, 209-237 (2001).

    Google Scholar 

  28. E. L. Dreizin, “Experimental study of aluminum particle flame evolution in normal and micro-gravity,” Combust. Flame, 116, 323-333 (1999).

    Google Scholar 

  29. E. L. Dreizin, D. G. Keil, W. Felder, and E. P. Vicenzi, “Phase changes in boron ignition and combustion,” Combust. Flame, 119, 272-290 (1999).

    Google Scholar 

  30. E. L. Dreizin, “Phase changes in metal combustion,” Prog. Energ. Combust. Sci., 26, No. 1, 57-78 (2000).

    Google Scholar 

  31. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak (eds.), Binary Alloy Phase Diagrams, ASM Publ., Materials Park, OH (1990).

    Google Scholar 

  32. Yu. V. Levinskii, p–T–x Binary Phase Diagrams of Metal Systems [in Russian], Metallugriya, Moscow (1990).

    Google Scholar 

  33. J. D. Fast, Interaction of Metals and Gases, Academic Press, New York, London (1965).

    Google Scholar 

  34. E. W. Price, “Combustion of metalized propellants,” K. K. Kuo and M. Summerfield (eds.), Fundamentals of Solid Propellant Combustion, AIAA, New York (1984), pp. 479-514.

    Google Scholar 

  35. P. Bucher, R. A. Yetter, F. L. Dryer, et al., “Flame structure measurement of single, isolated aluminum particles burning in air,” in: 26th Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh, PA (1997), pp. 1899-1908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreizin, E.L. Effect of Phase Changes on Metal‐Particle Combustion Processes. Combustion, Explosion, and Shock Waves 39, 681–693 (2003). https://doi.org/10.1023/B:CESW.0000007682.37878.65

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000007682.37878.65

Navigation