Skip to main content
Log in

Parataxonomy vs. taxonomy in biodiversity studies – pitfalls and applicability of ‘morphospecies’ sorting

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Parataxonomic sorting of samples to recognizable taxonomic units (RTUs, morphospecies, morphotypes or, as proposed here: parataxonomic units [PUs]) is generally considered to be a sufficiently reliable and conservative approach in ecological biodiversity studies or conservation biology. It is obviously time-saving because it avoids the burdens of taxonomy. However, evaluations of parataxonomic sorting by taxonomic resorting show many overestimations of species numbers. Hence, RTU sorting is not necessarily conservative. Sorting errors can be more than 100% (median in the present compilation: 22%). Even if the cumulative results for diverse groups like beetles have a very low overall error, the error rate in the single families is generally much higher. This pattern is likely to cause severe problems in multivariate analyses. The presumable error rate in sorting does not depend only on the group to be sorted, but also on the sorter and the sample. Therefore, the sorting error is not predictable. Since PUs are generally neither described nor assigned to existing names, the sorting results are difficult to check and it is mostly not revealed why the samples are sorted as they are. Since parataxonomy does not use existing biological knowledge, creates typological units and does not disclose its sorting criteria, inter-subjective testability and falsifiability of the sorting results are more difficult than of taxonomic identifications (or are even impossible). Parataxonomy does not fulfil the criteria of a scientific method, but is propedeutic and can be a heuristically valuable tool to find out patterns in taxonomically neglected groups. However, it is only the first step in sorting and identifying samples in biodiversity studies. PUs are useless for inventories and area selection in conservation evaluation, biogeographical and autecological studies; they provide only uncertain data for studies in species turnover and overlap, but they can be used quite reliably for global comparisons of gross species richness, non-comparative descriptions of species richness of single sites or for comparisons of sites without species overlap. If results of parataxonomic sorting show clear and biologically meaningful patterns, the sorting is likely to be reliable. Weak or no detectable patterns may easily be caused by erroneous sorting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anonymous 1993. Convention on Biological Diversity opened for signature at Rio de Janeiro 5 June 1992. Miscellaneous Series, Great Britain 3:. 26 pp.

  • Anonymous 2000. Systematics Agenda 2000: Charting the Biosphere. New York, USA, Technical Report.

  • Basset Y., Novotny V., Miller S.E. and Pyle R. 2000. Quantifying biodiversity: experience with parataxonomists and digital photography in Papua New Guinea and Guyana. BioScience 50: 899–908.

    Google Scholar 

  • Beattie A.J., Majer J.D. and Oliver I. 1993. Rapid biodiversity assessment: a review. In: Beattie A.J. (ed.), Rapid Biodiversity Assessment. Macquarie University, Sydney, Australia, pp. 4–14.

    Google Scholar 

  • Beattie A.J. and Oliver I. 1995. Reply from A.J. Beattie and I. Oliver. Trends in Ecology and Evolution 10: 203–204.

    Google Scholar 

  • Bolger D.T., Suarez A.V., Crooks K.R., Morrison S.A. and Case T.J. 2000. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecological Applications 10: 1230–1248.

    Google Scholar 

  • Cain A.J. 1954. Animal Species and Their Evolution. Hutchinson's University Library, London.

    Google Scholar 

  • Campbell I.C. 1995. Taxonomic minimalism. Trends in Ecology and Evolution 10: 203.

    Google Scholar 

  • Cranston P.S. 1990. Biomonitoring and invertebrate taxonomy. Environmental Monitoring and Assessment 14: 265–273.

    Google Scholar 

  • Cranston P. and Hillman T. 1992. Rapid assessment of biodiversity using 'biological diversity technicians'. Australian Biologist 5: 144–154.

    Google Scholar 

  • Derraik J.G.B., Closs G.P., Dickinson K.J.M., Sirvid P., Barratt B.I.P. and Patrick B.H. 2002. Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conservation Biology 16: 1015–1023.

    Google Scholar 

  • Dudgeon D. 1982. Aspects of the microdistribution of insect macrobenthos in a forest stream in Hong Kong. Archiv für Hydrobiologie, Supplement 64: 221–239.

    Google Scholar 

  • Dudgeon D. 1984. Longitudinal and temporal changes in functional organization of macroinvertebrate communities in the Lam Tsuen River, Hong Kong. Hydrobiologia 111: 207–217.

    Google Scholar 

  • Dudgeon D. 1988. The influence of riparian vegetation on macroinvertebrate community structure in four Hong Kong streams. Journal of Zoology 216: 609–627.

    Google Scholar 

  • Ehrlich P.R. 1997. A World of Wounds: Ecologists and the Human Dilemma. Ecology Institute, Oldendorf/Luhe, Germany.

    Google Scholar 

  • Floren A. and Linsenmair K.E. 1998. Non-equilibrium communities of Coleoptera in trees in a lowland rain forest of Borneo. Ecotropica 4: 55–67.

    Google Scholar 

  • Gámez R. 1991. Biodiversity conservation through facilitation of its sustainable use: Costa Rica's National Biodiversity Institute. Trends in Ecology and Evolution 6: 377–378.

    Google Scholar 

  • Glowka L., Burhenne-Guilmin F., Synge H., McNeely J.A. and Gründling L. 1994. A Guide to the Convention on Biological Diversity (Environmental Policy and Law Paper No. 30). IUCN, Gland, Switzerland.

    Google Scholar 

  • Hammond P.M. 1995. Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philosophical Transactions of the Royal Society (B) 345: 119–136.

    Google Scholar 

  • Hopkins G.W. and Freckleton R.P. 2002. Declines in the numbers of amateur and professional taxonomists: implications for conservation. Animal Conservation 5: 245–249.

    Google Scholar 

  • Janzen D.H. 1991. How to save tropical biodiversity. American Entomologist 37: 159–171.

    Google Scholar 

  • Kitching R.L. 1993. Biodiversity and taxonomy: impediment or opportunity? In: Moritz C. and Kikkawa J. (eds), Conservation Biology in Australia and Oceania. Surrey Beatty, Chipping Norton, Australia, pp. 253–268.

    Google Scholar 

  • König B. and Linsenmair K.E. 1996. Biologische Diversität-Ein Phänomen und seine Dimensionen. In: König B. and Linsenmair K.E. (eds), Biologische Vielfalt. Spektrum Akademischer Verlag, Heidelberg, Germany, pp. 8–15.

    Google Scholar 

  • Krell F.-T. 1993. Taxonomie auf der Grundlage der Evolutionsbiologie. Carolinea Beiheft 8: 53–59.

    Google Scholar 

  • Lincoln R., Boxshall G. and Clark P. 1998. A Dictionary of Ecology, Evolution and Systematics. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mahner M. and Bunge M. 1997. Foundations of Biophilosophy. Springer, Berlin, Germany.

    Google Scholar 

  • Mayden R.L. 1997. A hierarchy of species concepts: the denouncement in the saga of the species problem. In: Claridge M.F., Dawah H.A. and Wilson M.R. (eds), Species. The Units of Biodiversity. Chapman & Hall, London, pp. 381–424.

    Google Scholar 

  • Mayr E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Minelli A. and Foddai D. 1997. The species in terrestrial non-insect invertebrates (earthworms, arachnids, myriapods, woodlice and snails). In: Claridge M.F., Dawah H.A. and Wilson M.R. (eds), Species. The Units of Biodiversity (The Systematics Association Special Volume 54). Chapman & Hall, London, pp. 309–324.

    Google Scholar 

  • New T.R. 1998. Invertebrate Surveys for Conservation. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Oliver I. and Beattie A.J. 1993. A Possible Method for the Rapid Assessment of Biodiversity. Conservation Biology 7: 562–568.

    Google Scholar 

  • Oliver I. and Beattie A.J. 1996a. Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecological Applications 6: 594–607.

    Google Scholar 

  • Oliver I. and Beattie A.J. 1996b. Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology 10: 99–109.

    Google Scholar 

  • Pik A.J., Oliver I. and Beattie A.J. 1999. Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Australian Journal of Ecology 24: 555–562.

    Google Scholar 

  • Panchen A.L. 1992. Classification, Evolution, and the Nature of Biology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Patterson C. 1982. Morphological Characters and Homology. In: Joysey K.A. and Friday A.E. (eds), Problems of Phylogenetic Reconstruction (Systematics Association Special Volume 21). Academic Press, London, pp. 21–74.

    Google Scholar 

  • Popper R. 1972. Objective Knowledge. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Popper R. 1989. Logik der Forschung. 9th edn. Mohr, Tübingen, Germany.

    Google Scholar 

  • Radnitzky G. 1992. Wissenschaftlichkeit. In: Seiffert H. and Radnitzky G. (eds), Handlexikon zur Wissenschaftstheorie. Deutscher Taschenbuch Verlag, München, Germany, pp. 399–405.

    Google Scholar 

  • Rees C.J.C. 1983. Microclimate and the flying Hemiptera fauna of a primary lowland rain forest in Sulawesi. In: Sutton S.L., Whitmore T.C. and Chadwick A.C. (eds), Tropical Rainforest: Ecology and Management. Blackwell, Oxford, UK, pp. 121–136.

    Google Scholar 

  • Robinson N.A. (ed.) 1993. Agenda 21: Earth's Action Plan Annotated (IUCN Environmental Policy & Law Paper No. 27). Oceana Publications, New York.

    Google Scholar 

  • de Roode J. 2000. Testing for Sexual Selection on Male Genitalia in Dung Beetles, M.Sc. Thesis, Wageningen University, The Netherlands, 31 pp. (unpublished).

    Google Scholar 

  • Sachs L. 1982. Applied Statistics. A Handbook of Techniques. Springer, New York.

    Google Scholar 

  • Samways M.J., Stork N.E., Cracraft J., Eeley H.A.C., Foster M., Lund G. et al. 1995. Scales, planning and approaches to inventorying and monitoring. In: Heywood V.H. and Watson R.T. (eds), Global Biodiversity Assessment. UNEP and Cambridge University Press, Cambridge, UK, pp. 475–517.

    Google Scholar 

  • Simpson G.G. 1961. Principles of Animal Taxonomy. Columbia University Press, New York.

    Google Scholar 

  • Slotow R. and Hamer M. 2000. Biodiversity research in South Africa: comments on current trends and methods. South African Journal of Science 96: 222–224.

    Google Scholar 

  • Sokal R.R. and Sneath P.H.A. 1963. Principles of Numerical Taxonomy. Freeman, San Francisco, California.

    Google Scholar 

  • Stork N.E. 1995. Measuring and inventorying arthropod diversity in temperate and tropical forests. In: Boyle T.J.B. and Boontawee B. (eds), Measuring and Monitoring Biodiversity in Tropical and Temperate forests. CIFOR, Bogor, Indonesia, pp. 257–270.

    Google Scholar 

  • Trueman J.W.H. and Cranston P.S. 1997. Prospects for the rapid assessment of terrestrial invertebrate biodiversity. Memoirs of the Museum of Victoria 56: 349–354.

    Google Scholar 

  • Uvarov B.P. 1931. Insects and climate. Transactions of the Entomological Society of London 79: 1–247.

    Google Scholar 

  • Vane-Wright R.I. 2003. Evidence and identity in butterfly systematics. In: Boggs C.L., Watt W.B. and Ehrlich P.R. (eds), Butterflies: Ecology and Evolution Taking Flight. University of Chicago Press, Chicago, Illinois pp. 477–513.

    Google Scholar 

  • Vecchione M., Mickevich M.F., Fauchald K., Collette B.B., Williams A.B., Munroe T.A. et al. 2000. Importance of assessing taxonomic adequacy in determining fishing effects on marine biodiversity. ICES Journal of Marine Science 57: 677–681.

    Google Scholar 

  • Vollmer G. 1990. Against Instrumentalism. In: Weingartner P. and Dorn G.J.W. (eds), Studies on Mario Bunge's Treatise. Rodopi, Amsterdam, The Netherlands, pp. 245–259.

    Google Scholar 

  • Wagner T. 1995. Verteilungsmuster und Artenvielfalt kronenbewohnender Käfer auf verschiedenen Baumarten in Zentralafrika. Verhandlungen des Westdeutschen Entomologentages 1994: 79–87.

    Google Scholar 

  • Wagner T. 1996. Zusammensetzung der baumbewohnenden Arthropodenfauna in Wäldern Zentralafrikas; mit Anmerkungen zur Nebelmethode und zum Morphotypen-Verfahren. Mitteilungen des Internationalen Entomologischen Vereins 21: 25–42.

    Google Scholar 

  • White M.J.D. 1978. Modes of Speciation. Freeman, San Francisco, California.

    Google Scholar 

  • Williams M.B. 1992. Species: current usages. In: Keller E.F. and Lloyd E.A. (eds), Keywords in Evolutionary Biology. Harvard University Press, Cambridge, Massachusetts, pp. 318–323.

    Google Scholar 

  • Williams P.H. 2001. Complementarity. In: Levin S.A. (ed.), Encyclopedia of Biodiversity 1. Academic Press, San Diego, California, pp. 813–829.

    Google Scholar 

  • Willmann R. 1985. Die Art in Raum und Zeit. Das Artkonzept in der Biologie und Paläontologie. Parey, Berlin, Germany.

    Google Scholar 

  • Zangerl R. 1948. The methods of comparative anatomy and its contribution to the study of evolution. Evolution 2: 351–374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krell, FT. Parataxonomy vs. taxonomy in biodiversity studies – pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation 13, 795–812 (2004). https://doi.org/10.1023/B:BIOC.0000011727.53780.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOC.0000011727.53780.63

Navigation