Skip to main content
Log in

Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This paper reviews the synthesis and the absorbing properties of the wide variety of porous sorbent materials that have been studied for application in the removal of organics, particularly in the area of oil spill cleanup. The discussion is especially focused on hydrophobic silica aerogels, zeolites, organoclays and natural sorbents many of which have been demonstrated to exhibit (or show potential to exhibit) excellent oil absorption properties. The areas for further development of some of these materials are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Fingas, Chemistry and Industry 24, 1005 (1995).

    Google Scholar 

  2. S. Kemnetz and C.A. Cody, US Patent 5,725,805 (1998).

  3. R.R. Lessard and G. Demarco, Spill Science &; Technology Bulletin 6(1), 59 (2000).

    Google Scholar 

  4. C. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, and G. Anastopoulos, Desalination 140(3), 259 (2001).

    Google Scholar 

  5. R.D. Delaune, C.W. Lindau, and A. Jugsujinda, Spill Science &; Technology Bulletin 5(5/6), 357 (1999).

    Google Scholar 

  6. E. Pelletier and R. Siron, Environmental Toxicology &; Chemistry 18, 813 (1999).

    Google Scholar 

  7. J.G. Reynolds, P.R. Coronado, and L.W. Hrubesh, Energy Sources 23, 831 (2001).

    Google Scholar 

  8. J.G. Reynolds, P.R. Coronado, and L.W. Hrubesh, Journal of Non-Crystalline Solids 292, 127 (2001).

    Google Scholar 

  9. H. Yokogawa and M. Yokoyama, Journal of Non-Crystalline Solids 186, 23 (1995).

    Google Scholar 

  10. K.-H. Lee, S.-Y. Kim, and K.-P. Yoo, Journal of Non-Crystalline Solids 186, 18 (1995).

    Google Scholar 

  11. C.J. Daughney, Organic Geochemistry 31, 147 (2000).

    Google Scholar 

  12. H.M. Choi and R.M. Cloud, Environmental Science and Technology 26(4), 772 (1992).

    Google Scholar 

  13. X.-F. Sun, R. Sun, and J.-X. Sun, Journal of Agricultural and Food Chemistry 50(22), 6428 (2002).

    Google Scholar 

  14. C.K.W. Meininghaus and R. Prins, Microporous and Mesoporous Materials 35/36, 349 (2000).

    Google Scholar 

  15. S. Gitipour, M.T. Bowers, W. Huff, and A. Bodocsi, Spill Science &; Technology Bulletin 4(3), 155 (1997).

    Google Scholar 

  16. R.W. Melvold, S.C. Gibson, and R. Scarberry, Sorbents for liquid Hazardous Substance Cleanup and Control (Noyes Data Corp., Park Ridge, NJ, 1988).

    Google Scholar 

  17. The International Tanker Owner Pollution Federation Limited, Measures to Combat Oil Pollution (Graham &; Trotman Limited, London, 1980).

    Google Scholar 

  18. P. Scharzberg, U.S. Coast Guard Report No. 724110.1/2/1 (U.S. Coast Guard Headquarters, Washington, DC, 1971).

    Google Scholar 

  19. P. Schatzberg and D.F. Jackson, U.S. Coast Guard Report No. 734209.9 (U.S. Coast Guard Headquarters, Washington, DC, 1972).

    Google Scholar 

  20. M. Toyoda, J. Aizawa, and M. Inagaki, Desalination 115(2), 199 (1998).

    Google Scholar 

  21. L.W. Hrubesh, J.F. Poco, and P.R. Coronado, U.S. Patent 6,005,012 (1999).

    Google Scholar 

  22. J. Fricke, Scientific American 258(5), 92 (1988).

    Google Scholar 

  23. S.S. Kistler, Nature 127, 741 (1931).

    Google Scholar 

  24. G.A. Nicolaon and S.J. Teichner, Bulletin de la Societe Chimique de France 5, 1906 (1968).

    Google Scholar 

  25. F. Schwertfeger, W. Glaubitt, and U. Schubert, J. Non-Crystalline Solids 145(1-3), 85 (1992).

    Google Scholar 

  26. T.M. Tillotson and L.W. Hrubesh, J. Non-Crystalline Solids 145(1-3), 44 (1992).

    Google Scholar 

  27. Y.F. Lu, L. Han, C.J. Brinker, T.M. Niemczyk, and G.P. Lopez, Sens. Actuators, B-Chem. 36(1-3), 517 (1996).

    Google Scholar 

  28. D.Y. Sasaki, C.J. Brinker, C.S. Ashley, C.E. Daitch, K.J. Shea, and D.J. Rush, US Patent 6,057,377 (2000).

  29. J.A. Patterson, US Patent 5,971,659 (1999).

  30. R.A. Falk and K.F. Mueller, US Patent 4,266,080 (1981).

  31. L.W. Hrubesh, P.R. Coronado, and J.H. Satcher, Journal of Non-Crystalline Solids 285(1-3), 328 (2001).

    Google Scholar 

  32. P.R. Coronado, L.W. Hrubesh, and J.G. Reynolds, US Patent 20020185444 (2002).

  33. M.J. Ruhl, Chem. Eng. Prog. 89, 37 (1993).

    Google Scholar 

  34. E.N. Ruddy, Chem. Eng. Prog. 89, 28 (1993).

    Google Scholar 

  35. M.H. Stenzel, Chem. Eng. Prog. 89, 36 (1993).

    Google Scholar 

  36. T. Maesen and B. Marcus, in Studies in Surface Science and Catalysis 137—Introduction to Zeolite Science and Practice, edited by J.C. Jansen (Elsevier Science, Amsterdam, 2001), Vol. 137, p. 1.

    Google Scholar 

  37. D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  38. J. Küntzel, R. Ham, and T. Melin, Chem. Eng. Technol. 22(12), 991 (1999).

    Google Scholar 

  39. J. Küntzel, R. Ham, and T. Melin, Chem. Ing. Tech. 71, 508 (1999).

    Google Scholar 

  40. W. Otten, E. Gail, and T. Frey, Chem. Ing. Tech. 64, 915 (1992).

    Google Scholar 

  41. D.M. Ruthven, Chem. Eng. Prog. 84, 42 (1988).

    Google Scholar 

  42. J.C. Jansen, in Studies in Surface Science and Catalysis 137— Introduction to Zeolite Science and Practice, edited by J.C. Jansen (Elsevier Science, Amsterdam, 2001), p. 175.

    Google Scholar 

  43. T. Loiseau and G. Ferey, J. Mater. Chem. 6(6), 1073 (1996).

    Google Scholar 

  44. S.M. Campbell, D.M. Bibby, J.M. Coddington, and R.F. Howe, J. Catal. 161, 338 (1996).

    Google Scholar 

  45. R.M. Barrer and M.B. Makki, Can. J. Chem. 42, 1481 (1964).

    Google Scholar 

  46. C.W. Jones, S.-J. Hwang, T. Okubo, and M.E. Davis, Chem. Mater. 13, 1041 (2001).

    Google Scholar 

  47. G.T. Kerr, J. Phys. Chem. 72, 2594 (1968).

    Google Scholar 

  48. H.K. Beyer and I. Belenykaja, in Studies in Surface Science and Catalysis 5—Catalysis by Zeolites, edited by H. Praliaud (Elsevier Science, Amsterdam, 1980), Vol. 5, p. 203.

    Google Scholar 

  49. D. Barthomeuf, Zeolites 14(6), 394 (1994).

    Google Scholar 

  50. G.W. Skeels and D.W. Breck, in Proceedings of the 6th International Zeolite Conference, edited by A. Bisio (Butterworths, Guilford, UK, 1984), p. 87.

    Google Scholar 

  51. G. Ferey, C.R. Acad. Sci., Ser. IIc: Chim 1(1), 1 (1998).

    Google Scholar 

  52. M. Huang, A. Adnot, and S. Kiliaguine, J. Chem. Soc., Faraday Trans. 89(23), 4231 (1993).

    Google Scholar 

  53. X.S. Zhao and G.Q. Lu, J. Phys. Chem. 102, 1556 (1998).

    Google Scholar 

  54. P. Van Der Voort and E.F. Vansant, J. Liq. Chromatogr. Relat. Technol. 19, 2723 (1996).

    Google Scholar 

  55. N.Y. Chen, US Patent 3,732,326 (1973).

  56. N.Y. Chen, J. Phys. Chem. 80, 60 (1976).

    Google Scholar 

  57. X.S. Zhao, Q. Ma, and G.Q. Lu, Energy &; Fuels 12, 1051 (1998).

    Google Scholar 

  58. K. Miki, H. Kitagawa, and R. Oyama, JP Patent 48083089 (1973).

  59. P. Fejes, A. Kiss, P. Szakal, and F. Barna (Mrs.), HU Patent 25511 (1983).

  60. J. Haruna and M. Meguro, JP Patent 04012015 (1992).

  61. J. Haruna and T. Tanaka, JP Patent 04004039 (1992).

  62. J. Haruna and M. Sano, JP Patent 04219185 (1992).

  63. J. Haruna and T. Tanaka, JP Patent 04001242 (1992).

  64. A. Kitta and T. Kosuga, JP Patent 2002316147 (2002).

  65. K. Nagashima, F. Yamazaki, H. Okabe, K. Sakurai, and S. Sakai, JP Patent 08052350 (1996).

  66. T. Andras, M. Gyorgy, A. Peter, B. Gyorgy, and J. Eszter, Muanyag es Gumi 34(2), 41 (1997).

    Google Scholar 

  67. X. Querol, J.C. Umaña, F. Plana, A. Alastuey, A. Lopez-Soler, A. Medinaceli, A. Valero, M.J. Domingo, and E. Garcia-Rojo, Fuel 80, 857 (2001).

    Google Scholar 

  68. J. Davidovits, J. Thermal Analysis 37, 1633 (1991).

    Google Scholar 

  69. H. Xu and J.S.J. Van Deventer, Int. J. Miner. Process 59, 247 (2000).

    Google Scholar 

  70. J.W. Phair, J.S.J. Van Deventer, and J.D. Smith, Ind. Eng. Chem. Res. 39, 2925 (2000).

    Google Scholar 

  71. W.-B. Xu, S.-P. Bao, S.-P. Tang, and P.-S. He, Gaofenzi Cailiao Kexue Yu Gongcheng 18(2), 183 (2002).

    Google Scholar 

  72. J.C. Swanepoel and C.A. Strydom, Applied Geochemistry 17, 1143 (2002).

    Google Scholar 

  73. R.E. Grim, Clay Mineralogy, 2nd edition (McGraw-Hill, New York, NY, 1968).

    Google Scholar 

  74. B.K.G. Theng, The Chemistry of Clay-Organic Reactions (John Wiley, New York, NY, 1974).

    Google Scholar 

  75. J.A. Raussell-Colom and J.M. Serratosa, in Chemistry of Clays and Clay Minerals, edited by A.C.D. Newman (Longmans, London, 1987), p. 371.

    Google Scholar 

  76. Z. Ding, J.T. Kloprogge, and R.L. Frost, J. Porous Materials 8, 273 (2001).

    Google Scholar 

  77. J.T. Kloprogge, J. Porous Materials 5, 5 (1998).

    Google Scholar 

  78. C.T. Chiou, P.E. Porter, and D.W. Schmedding, Environmental Science &; Technology 17, 227 (1983).

    Google Scholar 

  79. S.A. Boyd, J.F. Lee, and M. Mortland, Nature 333, 345 (1988).

    Google Scholar 

  80. M.B. McBride, I.J. Pinnava, and M.M. Mortland, in Advances in Environmental Science and Technology. Fate of Pollutants in the Air and Water Environments, Part 1 (John Wiley, New York, NY, 1977).

    Google Scholar 

  81. J.C. Evans and S.E. Pancoski, Transportation Research Record 1219, 160 (1989).

    Google Scholar 

  82. G.R. Alther, J.C. Evans, and S.E. Pancoski, in HMCRI's 9th National Conference, Superfund 88 (HMCRI, 9300 Columbia Blvd., Silver Spring, MD 20910, 1988), p. 440.

  83. H. Moazed and T. Viraraghavan, Hazardous and Industrial Wastes 31, 187 (1999).

    Google Scholar 

  84. H. Moazed and T. Viraraghavan, Journal of Canadian Petroleum Technology 40(9), 37 (2001).

    Google Scholar 

  85. H. Moazed and T. Viraraghavan, Water, Air, and Soil Pollution 138(1-4), 253 (2002).

    Google Scholar 

  86. G.R. Alther, Journal—American Water Works Association 94(7), 115 (2002).

    Google Scholar 

  87. G.R. Alther, Waste Management (New York) 15(8), 623 (1995).

    Google Scholar 

  88. G. Alther, Contaminated Soil Sediment &; Water, 21 (2001).

  89. G. Alther, Waste Management (Amsterdam, Netherlands) 22(5), 507 (2002).

    Google Scholar 

  90. G. Alther, Contaminated Soils 6, 225 (2001).

    Google Scholar 

  91. M.T. Bryk and N.M. Yakovenko, Khimiya i Tekhnologiya Vody 9(2), 186 (1987).

    Google Scholar 

  92. A.B. Bourlinos, E. Devlin, N. Boukos, A. Simopoulos, and D. Petridis, Clay Minerals 37(1), 135 (2002).

    Google Scholar 

  93. M. Toyoda, J. Aizawa, and M. Inagaki, Nippon Kagaku Kaishi 8, 563 (1998).

    Google Scholar 

  94. M. Toyoda, K. Moriya, J. Aizawa, and M. Inagaki, Nippon Kagaku Kaishi 3, 193 (1999).

    Google Scholar 

  95. M. Inagaki, H. Konno, M. Toyoda, K. Moriya, and T. Kihara, Desalination 128, 213 (1999).

    Google Scholar 

  96. M. Inagaki, K. Shibata, S. Etou, M. Toyoda, and J. Aizawa, Desalination 128, 219 (1999).

    Google Scholar 

  97. M. Toyoda, K. Moriya, and M. Inagaki, Tanso 187, 96 (1999).

    Google Scholar 

  98. M. Toyoda, K. Moriya, J. Aizawa, H. Konno, and M. Inagaki, Desalination 128, 205 (1999).

    Google Scholar 

  99. M. Toyoda and M. Inagaki, Carbon 38(2), 199 (2000).

    Google Scholar 

  100. B. Tryba, R.J. Kalenczuk, F. Kang, M. Inagaki, and A.W. Morawski, Mol. Crys. Liq. Cryst. 340, 113 (2000).

    Google Scholar 

  101. M. Inagaki, M. Toyoda, N. Iwashita, Y. Nishi, and H. Konno, Carbon Science 2(1), 1 (2001).

    Google Scholar 

  102. F. Fajula and D. Plee, Stud. Surf. Sci Catal. 85, 633 (1994).

    Google Scholar 

  103. W. Jarre, M. Marx, and R. Wurmb, Angewandte Makromolekulare Chemie 78, 67 (1979).

    Google Scholar 

  104. H.-M. Choi, Journal of Environmental Science and Health, Part A: Environmental Science and Engineering &; Toxic and Hazardous Substance Control A31(6), 1441 (1996).

    Google Scholar 

  105. K. Hori, M.E. Flavier, S. Kuga, T.B.T. Lam, and K. Iiyama, J. Wood Sci. 46, 401 (2000).

    Google Scholar 

  106. F. D'Hennezel and B. Coupal, CIM (Can. Inst. Mining Met.) Bull. 65(717), 51 (1972).

    Google Scholar 

  107. R. DePetris, US Patent 5186831 (1993).

  108. J.P. Moreau, Textile Research Journal 63(4), 211 (1993).

    Google Scholar 

  109. Y. Kobayashi, R. Matsuo, and M. Nishiyama, Japanese Patent 52,138,081 (1977).

  110. Corporate Author, Chem. Eng. 90(7), 49 (1983).

    Google Scholar 

  111. T.L. Faudree (III), US Patent 4,230,566 (1980).

  112. H. Yoshiyuki, I. Toru, G. Tomoki, G. Takakiyo, U. Toro, and R. Kenji, European Patent 0,441,512,B1 (1994).

  113. P.B. Fransham and D. Lynch, in Symp. Pap. Energy Biomass Wastes (Institute of Gas Technology, Chicago, IL, 1991), p. 895.

    Google Scholar 

  114. A. Gabrick, US Patent 4,941,978 (1989).

  115. A. Gabrick, US Patent 5,104,548 (1992).

  116. S. Kemnetz and C.A. Cody, US Patent 5,558,777 (1996).

  117. C.A. Blaney and H.L. Griesbach (III), US Patent 5,834,385 (1998).

  118. L.M. Robeson, R. Axelrod, and T.A. Manuel, US Patent 5,120,598 (1992).

  119. B.J. Houston, Defense Technical Information Centre Report AEWES-MISC-PAPER-C-68-5 (Defense Technical Information Centre, 1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adebajo, M., Frost, R., Kloprogge, J. et al. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. Journal of Porous Materials 10, 159–170 (2003). https://doi.org/10.1023/A:1027484117065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027484117065

Navigation