Skip to main content
Log in

Caleosins: Ca2+-binding proteins associated with lipid bodies

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have previously identified a rice gene encoding a 27 kDa protein with a single Ca2+-binding EF-hand and a putative membrane anchor. We report here similar genes termed caleosins, CLO, in other plants and fungi; they comprise a multigene family of at least five members in Arabidopsis (AtClo1–5). Northern hybridization demonstrated that AtClo2–4 mRNAs levels were low in various tissues, while AtClo1 mRNA levels were high in developing embryos and mature seeds. Analysis of transgenic Arabidopsis plants expressing the GUS reporter under control of the AtClo1 promoter showed strong levels of expression in developing embryos and also in root tip cells. Antibodies raised against AtCLO1 were used to detect caleosin in cellular fractions of Arabidopsis and rapeseed. This indicated that caleosins are a novel class of lipid body proteins, which may also be associated with an ER subdomain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abell, B.M., Holbrook, L.A., Abenes, M., Murphy, D.J., Hills, M.J. and Moloney, M.M. 1997. Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9: 1481–1493.

    PubMed  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  PubMed  Google Scholar 

  • Bairoch A., Bucher P. and Hofmann K. 1997. The PROSITE database, its status in 1997. Nucl. Acids Res. 25: 217–221.

    PubMed  Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis plants. C.R. Acad. Sci., Paris, Life Sci. 31: 1194–1199.

    Google Scholar 

  • Benfey, P.N., Ren, L. and Chua, N.-H. 1990. Tissue-specific expression from CaMV enhancer subdomains in early stages of plant development. EMBO J. 9: 1677–1684.

    PubMed  Google Scholar 

  • Breviario, D., Morello, L. and Giani, S. 1995. Molecular cloning of two novel rice sequences encoding putative calcium-dependent protein kinases. Plant Mol. Biol. 27: 953–967.

    PubMed  Google Scholar 

  • Busch, M.B., Koertje, K.H., Rahmann, H. and Sievers, A. 1993. Characteristic and differential calcium signals from cell structures of the root cap detected by energy-filtering electron microscopy (EELS/ESI). Eur. J. Cell Biol. 60: 88–100.

    PubMed  Google Scholar 

  • Chapman, K.D. and Trelease, R.N. 1991. Acquisition of membrane lipids by differentiating glyoxysomes: role for lipid bodies. J. Cell Biol. 115: 995–1007.

    PubMed  Google Scholar 

  • Chen, E.C., Tai, S.S., Peng, C.C. and Tzen, J.T. 1998. Identification of three novel unique proteins in seed oil bodies of sesame. Plant Cell Physiol. 39: 935–941.

    PubMed  Google Scholar 

  • Chen, J.C.F., Tsai, C.C.Y. and Tzen, J.T.C. 1999. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol. 40: 1079–1086.

    PubMed  Google Scholar 

  • Craig, S., Staehelin, L.A. 1988. High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur. J. Cell Biol. 46: 80–93.

    Google Scholar 

  • Creusot, F. Fouilloux, E., Dron, M., Lafleuriel, J., Picard, G., Billault, A., Le Paslier, D., Cohen, D., Chaboue, M.E. and Durr, A. 1995. The CIC library: a large insert YAC library for genome mapping in Arabidopsis. Plant J. 8: 763–770.

    PubMed  Google Scholar 

  • Cummins, I., Hills, M.J., Ross, J.H.E., Hobbs, D.H., Watson, M.D. and Murphy, D.J. 1994. Differential, temporal and patial expression of genes involved in storage oil and oleosin accumulation in developing B. napus embryos: implications for the role of oleosins and the mechanisms of oil-body formation. Plant Mol. Biol. 23: 1015–1027.

    Google Scholar 

  • Frandsen, G.I., Moller-Uri, F., Nielsen, M., J. Mundy and Skriver, K. 1996. Novel plant Ca+2-binding protein expressed in response to abscisic acid and osmotic stress. J. Biol. Chem. 271: 343–348.

    PubMed  Google Scholar 

  • Hartmann, E., Rapoport, T.A. and Lodish, H.F. 1989. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. USA 86: 5786–5790.

    PubMed  Google Scholar 

  • Henikoff, S. and Henikoff, J.G. 1991. Automated assembly of protein blocks for database searching. Nucl. Acids Res. 19: 6565–6572.

    PubMed  Google Scholar 

  • Hensel, W. 1986. Cytodifferentiation of polar plant cells use of antimicrotubular agents during the differentiation of statocytes from cress roots (Lepidium sativum L.). Planta. 169: 293–303.

    PubMed  Google Scholar 

  • Herman, E.M., Baumgartner, B. and Chrispeels, M.J. 1981. Uptake and apparent digestion of cytoplasmic organelles by protein bodies (protein storage vacuoles) in mung bean (Vigna radiata) cotyledons. Eur. J. Cell Biol. 24: 226–235.

    PubMed  Google Scholar 

  • Herman, E.M., Melroy, D.L. and Buckhout, T.J. 1989. Apparent processing of a soybean oil body protein accompanies the onset of oil mobilization. Plant Physiol. 94: 341–349.

    Google Scholar 

  • Hilling, B. and Amelunxen, F. 1985. On the development of the vacuole. II. Further evidence for endoplasmic reticulum origin. Eur. J. Cell Biol. 38: 195–200.

    Google Scholar 

  • Hoh, B., Hinz, G., Jeong, B.-K. and Robinson, D.G. 1995. Protein storage vacuoles form de novo during pea cotyledon development. J. Cell Sci. 108: 299–310.

    PubMed  Google Scholar 

  • Horton, P. and Nakai, K. 1996. A probabilistic classification system for predicting the cellular localization sites of proteins. Intell. Syst. Mol. Biol. 4: 109–115.

    Google Scholar 

  • Huang, A.H.C. 1996. Oleosin and oil bodies in seeds and other organs. Plant Physiol. 110: 1055–1061.

    PubMed  Google Scholar 

  • Ikura, M. 1996. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 26: 14–17.

    Google Scholar 

  • Jauh, G.-Y., Fischer, A.M., Grimes, H.D., Ryan, C.A. and Rogers, J.C. 1998. Delta tonoplast intrinsic protein defines plant cell vacuoles with specialized storage functions. Proc. Natl. Acad. Sci. USA 95: 12995–12999.

    PubMed  Google Scholar 

  • Jauh, G.-Y., Phillips, T. and Rogers, J.C. 1999. Tonoplast intrinsic protein isoforms as markers for vacuole functions. Plant Cell 11: 1867–1882.

    PubMed  Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.V. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 8: 3901–3907.

    Google Scholar 

  • Jiang, L. and Rogers, J.C. 1998. Integral membrane protein sorting to vacuoles in plant cells: evidence for two pathways. J. Cell Biol. 143: 1183–1199.

    PubMed  Google Scholar 

  • Johnson, K.D., Herman, E.M. and Chrispeels, M.J. 1989. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 91: 1006–1013.

    Google Scholar 

  • Kalinski, A., Weisemann, J.M., Matthews, B.F. and Herman, E.M. 1990. Molecular cloning of a protein associated with soybean seed oil bodies which is similar to thiol proteases of the papain family. J. Biol.Chem. 265: 13843–13848.

    PubMed  Google Scholar 

  • Kawasaki, H., Nakayama, S. and Kretsinger, R.H. 1998. Classification and evolution of EF-hand proteins. BioMetals 11:277–295.

    PubMed  Google Scholar 

  • Kirsch, T., Paris, N., Butler, J.M., Beevers, L. and Rogers, J.C. 1994. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl. Acad. Sci. USA 91: 3403–3407.

    PubMed  Google Scholar 

  • Klimczak, L.J., Collinge, M.A., Farini, D., Giuliano, G., Walker, J.C. and Cashmore, A.R. 1995. Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell 7: 105–115.

    PubMed  Google Scholar 

  • Lin, P., Le-Niculescu, H., Hofmeister, R., McCaffery, J.M., Jin, M., Hennemann, H., McQuistan, T., de Vries, L. and Farquhar, M.G. 1998. The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J. Cell Biol. 141: 1515–1527.

    PubMed  Google Scholar 

  • Lincoln, S., Daly, M. and Lander, E. 1993. MAPMAKER/EXP (mapmakerenome.wi.mit.edu).

  • Lister, C. and Dean, C. 1993. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4: 745–750.

    Google Scholar 

  • Lu, G., Sehnke, P.C. and Ferl, R.J. 1994. Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homolog. Plant Cell 6: 501–510.

    PubMed  Google Scholar 

  • Mäntylä, E., Lang, V. and Palva, E.T. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107: 141–148.

    PubMed  Google Scholar 

  • Mayer, A. 1999. Intracellular membrane fusion: SNAREs only? Curr. Opin. Cell Biol. 11: 447–452.

    PubMed  Google Scholar 

  • Millichip, M., Tatham, A.S., Jackson, F., Griffiths, G., Shewry, P.R. and Stobart, A.K. 1996. Purification and characterization of oilbodies (oleosomes) and oil-body boundary proteins (oleosins) from the developing cotyledons of sunflower (Helianthus annuus L.). Biochem. J. 314: 333–337.

    PubMed  Google Scholar 

  • Moncrief, N.D., Kretsinger, R.H. and Goodman, M. 1990. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. Mol. Evol. 30: 522–562.

    PubMed  Google Scholar 

  • Mundy, J. Mayer, R. and Chua, N.-H. 1995. Cloning genomic sequences with long-range PCR. Plant Mol. Biol. Rep. 13: 156–163.

    Google Scholar 

  • Murphy, D.J. and Vance, J. 1999. Mechanisms of lipid body formation. Trends Biochem. Sci. 24: 109–115.

    PubMed  Google Scholar 

  • Naested, H., Jensen, A.B. and Mundy, J. 1999. Preparation of pooled Arabidopsis YAC DNAs for PCR-based mapping. Plant Mol. Biol. Rep. 17: 67–72.

    Google Scholar 

  • Napier, J.A., Stobart, A.K. and Shewry, P.R. 1996. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol. Biol. 31: 945–956.

    PubMed  Google Scholar 

  • Neuhaus, J.-M. and Rogers, J.C. 1998. Sorting of proteins to vacuoles in plant cells. Plant Mol. Biol. 38: 127–144.

    PubMed  Google Scholar 

  • Ogas, J., Cheng, J.C., Sung, Z.R. and Somerville, C. 1997. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277: 91–94.

    Google Scholar 

  • Paris, N., Stanley, C.M., Jones, R.L. and Rogers, J.C. 1996. Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572.

    PubMed  Google Scholar 

  • Pedersen, A.G. and Nielsen, H. 1997. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Intell. Syst. Mol. Biol. 5: 226–233.

    Google Scholar 

  • Pfeffer, S.R. 1999. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1: E17–E22.

    PubMed  Google Scholar 

  • Plana, M., Itarte, E., Ertija, R., Goday, A., Pages, M. and Martinez, M.C. 1991. Phosphorylation of maize RAB-17 protein by casein kinase 2. J. Biol. Chem. 266: 22510–22514.

    PubMed  Google Scholar 

  • Robinson, D.G., Hinz, G. and Oberbeck, K. 1994. Isolation of endoand plasmamembranes. In: N. Harris and K. Oparka (Eds.) Plant Cell Biology: A Practical Approach, IRL Press, Oxford, pp. 245–272.

    Google Scholar 

  • Rogers, S.W., Burks, M. and Rogers, J.C. 1997. Monoclonal antibodies to barley aleurain and homologues from other plants. Plant J. 11: 1359–1368.

    PubMed  Google Scholar 

  • Rost, B., Sander, C. and Schneider, R. 1994. PHD – an automatic mail server for protein secondary structure prediction. Comp. Appl. Biosci. 10: 53–60.

    PubMed  Google Scholar 

  • Sanderfoot, A.A. and Raikhel, N.V. 1999. The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell. 11: 629–641.

    PubMed  Google Scholar 

  • Sargent, J.A. and Osborne, D.J. 1980. A comparative study of the fine structure of coleorhiza and root cells during the early hours of germination of rye embryos. Protoplasma 104: 91–103.

    Google Scholar 

  • Sarmiento, C., Ross, J.H.E., Herman, E. and Murphy D.J. 1997. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Plant J. 11: 783–796.

    PubMed  Google Scholar 

  • Staehelin, L.A. 1997. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 11: 1151–1165.

    PubMed  Google Scholar 

  • Tzen, J.T.C., Peng, C.C., Cheng, D.J. and Chiu, J.M.H. 1997. A new method for seed oil body purification and examination of oil body integrity following germination. J. Biochem. 121: 762–768.

    PubMed  Google Scholar 

  • Valivullah, H.M., Bevan, D.R., Peat, A., and Keenan T.W. 1988. Milk lipid globules: control of their size distribution. Proc. Natl. Acad. Sci. USA 85: 8775–8779.

    PubMed  Google Scholar 

  • Walker, J. 1993. Receptor-like protein kinase genes of Arabidopsis thaliana. Plant J. 3: 451–456.

    PubMed  Google Scholar 

  • Wanner, G., Formanek, H. and Thiemer, R.R. 1981. The ontogeny of lipid bodies (spherosomes) in plant cells. Planta 151: 109–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Næsted, H., Frandsen, G.I., Jauh, GY. et al. Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol 44, 463–476 (2000). https://doi.org/10.1023/A:1026564411918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026564411918

Navigation