Skip to main content
Log in

Phytase enzymology, applications, and biotechnology

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Phytases are phosphohydrolases that initiate the step-wise removal of phosphate from phytate. These enzymes have been widely used in animal feeding to improve phosphorus nutrition and to reduce phosphorus pollution of animal waste. The potential of phytases in improving human nutrition of essential trace minerals in plant-derived foods is being explored. This review covers the basic biochemistry and application of phytases, and emphasizes the emerging biotechnology used for developing new effective phytases with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baur X, Melching-Kollmuss S, Koops F, Straßburger K, Zober A (2002) IgE-mediated allergy to phytase-a new animal feed additive. Allergy 57: 943–945.

    Article  PubMed  Google Scholar 

  • Bentley ME, Caulfield LE, Ram M, Santizo MC, Hurtado E, Rivera JA, Ruel MT, Brown KH (1997) Zinc supplementation affects the activity patterns of rural Guatemalan infants. J. Nutr. 127: 1333–1338.

    PubMed  Google Scholar 

  • Biehl RR, Baker DH, Delucca HF (1995) 1—Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soy-based diets. J. Nutr. 125: 2407–2416.

    PubMed  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13: 297–336.

    Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Prot. Chem. 20: 287–292.

    Google Scholar 

  • Dao TH (2003) Polyvalent cation effects on myo-inositol hexakis dihydrogenphosphate enzymatic dephosphorylation in dairy wastewater. J. Environ. Qual. 32: 694–701.

    PubMed  Google Scholar 

  • Doekes G, Kamminga N, Helwegen L, Heederik D (1999) Occupational IgE sensitisation to phytase, a phosphate derived from Aspergillus niger. Occup. Environ. Med. 56: 454–459.

    PubMed  Google Scholar 

  • Ferguson EL, Gibson RS, Thompson LU, Ounpuu S (1989) Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of East African children. Am. J. Clin. Nutr. 50: 1450–1456.

    PubMed  Google Scholar 

  • Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PWF, Wood RJ (2002) Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort. Am. J. Clin. Nutr. 76: 1375–1384.

    PubMed  Google Scholar 

  • Fredrikson M, Biot P, Larsson Alminger M, Carlsson NG, Sandberg AS (2001) Production process for high-quality pea-protein isolate with low content of oligosaccharides and phytate. J. Agric. Food Chem. 49: 1208–1212.

    PubMed  Google Scholar 

  • Golovan SP, Hayes MA, Phillips JP, Forsberg CW (2001a) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nat. Biotechnol. 19: 429–433.

    PubMed  Google Scholar 

  • Golovan SP, Meidinger R, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard JW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hackler RR, Phillips JP, Forsberg CW (2001b) Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol. 19: 741–745.

    PubMed  Google Scholar 

  • Golovan SP, Wang G, Zhang J, Forsberg CW (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can. J. Microbiol. 46: 59–71.

    PubMed  Google Scholar 

  • Greiner R (2002) Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus var. Amiga). J. Agric. Food Chem. 50: 6858–6864.

    PubMed  Google Scholar 

  • Greiner R, Konietzny U (1996) Construction of a bioreactor to produce special breakdown products of phytate. J. Biotechnol. 48: 153–159.

    PubMed  Google Scholar 

  • Greiner R, Konietzny U (1999) Improving enzymatic reduction of myo-inositol phosphates with inhibitory effects on mineral absorption in black beans (Phaseolus vulgaris var. preto). J. Food Process Pres. 23: 249–261.

    Google Scholar 

  • Greiner R, Larsson Alminger M(1999) Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). J. Sci. Food Agric. 79: 1453–1460.

    Google Scholar 

  • Greiner R, Carlsson NG, Larsson Alminger M (2000a) Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. J. Biotechnol. 84: 53–62.

    Google Scholar 

  • Greiner R, Jany K-D, Larsson Alminger M (2000b) Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from Barley (Hordeum vulgare). J. Cer. Sci. 31: 127–139.

    Google Scholar 

  • Greiner R, Konietzny U, Jany KLD (1993) Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303: 107–113.

    Google Scholar 

  • Greiner R, Larsson Alminger M, Carlsson N, Muzquiz M, Burbano C, Cuadrado C, Pedrosa M, Goyoaga C (2002) Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. J. Agric. Food Chem. 50: 6865–6870.

    PubMed  Google Scholar 

  • Ha NC, Oh BC, Shin S, Kim HJ, Oh TK, Kim YO, Choi KY, Oh BH (2000) Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat. Struct. Biol. 7: 147–153.

    PubMed  Google Scholar 

  • Han YM, Lei XG (1999) Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 364: 83–90.

    PubMed  Google Scholar 

  • Han YM, Roneker KR, Pond WG, Lei XG (1998) Adding wheat middlings, microbial phytase, and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation. J. Anim. Sci. 76: 2649–2656.

    PubMed  Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000) The growth and phosphorus utilization of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant. Soil 220: 165–174.

    Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 126: 1598–1608.

    PubMed  Google Scholar 

  • Honke J, Kozlowska H, Vidal-Valverde C, Frias J, Górecky R (1998) Changes in quantities of inositol phosphates during maturation and germination of legume seeds. Z. Lebensm. Unters. Forsch. A 206: 279–283.

    Google Scholar 

  • Igbasan FA, Männer K, Miksch G, Borriss R, Farouk A, Simon O (2000) Comparative studies on the in vitro properties of phytases from various microbial origins. Arch. Anim. Nutr. 53: 353–373.

    Google Scholar 

  • Jermutus L, Tessier M, Pasamontes L, Van Loon APGM (2001) Structure-based chimeric enzymes as an alternative to directed enzyme evolution: phytase as a test case. J. Biotechnol. 85: 15–24.

    PubMed  Google Scholar 

  • Jongbloed, AW, Mroz Z, van der Weij-Jongbloed R, Kemme PA (2000) The effects of microbial phytase, organic acids and their interactions in diets for growing pigs. Livest. Prod. Sci. 67: 113–122.

    Google Scholar 

  • Kemme PA, Jongbloed AW, Mroz Z, Beynen AC (1997) The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J. Anim. Sci. 75: 2129–2138.

    PubMed  Google Scholar 

  • Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett. Appl. Microbiol. 30: 325–329.

    PubMed  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminem P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079–2085.

    PubMed  Google Scholar 

  • Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Biochem. J. 352: 623–628.

    PubMed  Google Scholar 

  • Kim Y, Kim HK, Bae KS, Yu JH, Oh T (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 22: 2–7.

    Google Scholar 

  • Kostrewa D, Grüninger-Leitch F, D'Arcy A, Broger C, Mitchell D, Van Loon APGM (1997) Crystal structure of phytase from Aspergillus ficuum at 2.5 Å resolution. Nat. Struc. Biol. 4: 185–190.

    Google Scholar 

  • Kostrewa D, Wyss M, D'Arcy A, Van Loon APGM (1999) Crystal structure of Aspergillus niger pH 2.5 acid phosphatase at 2.4 Å resolution. J. Mol. Biol. 288: 965–974.

    PubMed  Google Scholar 

  • Lassen SF, Breinholt J, Østergaard PR, Brugger R, Bischoff A, Wyss M, Fuglsang CC (2001) Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl. Environ. Microbiol. 67: 4701–4707.

    PubMed  Google Scholar 

  • Lehmann M, Kostrewa D, Wyss M, Brugger R, D'Arcy A, Pasamontes L, Van Loon APGM (2000a) From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13: 49–57.

    PubMed  Google Scholar 

  • Lehmann M, Lopez-Ulibarri R, Loch C, Viarouge C, Wyss M, Van Loon APGM (2000b) Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Sci. 9: 1866–1872.

    PubMed  Google Scholar 

  • Lei XG, Stahl CH (2001) Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 57: 474–481.

    PubMed  Google Scholar 

  • Lei XG, Ku PK, Miller ER, Ullrey DE, Yokoyama MT (1993a) Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123: 1117–1123.

    PubMed  Google Scholar 

  • Lei XG, Ku PK, Miller ER, Yokoyama MY (1993b) Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. J. Anim. Sci. 71: 3359–3367.

    PubMed  Google Scholar 

  • Lei XG, Ku PK, Miller ER, Yokoyama MT, Ullrey DE (1994) Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J. Anim. Sci. 72: 139–143.

    PubMed  Google Scholar 

  • Li J, Hegeman CE, Hanlon RW, Lacy GH, Denbow DM, Grabau EA (1997) Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant. Physiol. 114: 1103–1111.

    PubMed  Google Scholar 

  • Lim D, Golovan S, Forsberg C, Jia Z (2000) Crystal structures of Escherichia coli phytase and its complex with phytase. Nat. Struct. Biol. 7: 108–113.

    PubMed  Google Scholar 

  • Liu J, Bollinger DW, Ledoux DR, Ellersieck MR, Veum TL (1997) Soaking increases the efficacy of supplemental microbial phytase in a low-phosphorus corn-soybean meal diet for growing pigs. J. Anim. Sci. 75: 1292–1298.

    PubMed  Google Scholar 

  • Lönnerdal B, Bell JG, Hendrickx AG, Burns RA, Keen CL (1988) Effect of phytate removal on zinc absorption from soy formula. Am. J. Clin. Nutr. 48: 1301–1306.

    PubMed  Google Scholar 

  • Lönnerdal B, Jayawickrama L, Lien EL (1999) Effect of reducing phytate content and of partially hydrolyzing the protein in soy formula on zinc and copper absorption and status in infant rhesus monkeys and rat pups. Am. J. Clin. Nutr. 69: 490–496.

    PubMed  Google Scholar 

  • Lucca P, Hurrel R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. Theor. Appl. Genet. 102: 392–397.

    Google Scholar 

  • Maenz DD, Engele-Schaan CM, Newkirk RW, Classen HL (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Technol. 81: 177–192.

    Google Scholar 

  • Manary MJ, Krebs NF, Gibson RS, Broadhead RL, Hambridge KM (2002) Community-based dietary phytate reduction and its effect on iron status in Malawian children. Ann. Trop. Paediatr. 22: 133–136.

    PubMed  Google Scholar 

  • Maugenest S, Martinez I, Lescure A (1997) Cloning and characterization of a c-DNA encoding a maize seedling phytase. Biochem. J. 322: 511–517.

    PubMed  Google Scholar 

  • Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AHJ (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem. Biophys. Res. Commun. 297: 1016–1020.

    PubMed  Google Scholar 

  • Nelson T, Shieh TR, Wodzinski RJ, Ware JH (1971) Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 101: 1289–1293.

    PubMed  Google Scholar 

  • Ohri-Vachaspati P, Swindale AJ (1999) Iron in the diets of rural Honduran women and children. Ecol. Food Nutr. 38: 285–306.

    Google Scholar 

  • Ostanin K, Van Etten RL (1993) Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J. Biol. Chem. 268: 20778–20784.

    PubMed  Google Scholar 

  • Ostanin K, Harms EH, Stevis PE, Kuciel R, Zhou M, Van Etten RL (1992) Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J. Biol. Chem. 267: 22830–22836.

    PubMed  Google Scholar 

  • Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour. Technol. 77: 203–214.

    PubMed  Google Scholar 

  • Porres JM, Etcheverry P, Miller DD, Lei XG (2001) Phytase and citric acid supplementation in whole-wheat bread improves phytate-phosphorus release and iron dialyzability. J. Food Sci. 66: 614–619.

    Google Scholar 

  • Porres JM, Stahl CH, Cheng WH, Fu YX, Roneker KR, Pond WG, Lei XG (1999) Dietary intrinsic phytate protects colon from lipid peroxidation in pigs with moderately high iron intake. Proc. Soc. Exp. Biol. Med. 221: 80–86.

    PubMed  Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv. Food Res. 28: 1–92.

    PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant. J. 25: 641–649.

    PubMed  Google Scholar 

  • Rodriguez E, Mullaney E, Lei XG (2000a) Expression of the Aspergillus fumigatus gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem. Biophys. Res. Comm. 268: 373–378.

    PubMed  Google Scholar 

  • Rodriguez E, Wood ZA, Karplus PA, Lei XG (2000b) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105–112.

    PubMed  Google Scholar 

  • Rodriguez E, Porres JM, Han Y, Lei XG (1999) Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-ppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365: 262–267.

    PubMed  Google Scholar 

  • Sandberg AS, Larsen T, Sandström B (1993) High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet. J. Nutr. 123: 559–566.

    PubMed  Google Scholar 

  • Sandberg AS, Rossander L, Türk M (1996) Dietary Aspergillus niger phytase increases iron absorption in humans. J. Nutr. 126: 476–480.

    PubMed  Google Scholar 

  • Sands JS, Ragland D, Wilcox JR, Adeola O (2003) Relative bioavailability of phosphorus in low-phytate soybean meal for broiler chicks. Can. J. Anim. Sci. 83: 95–100.

    Google Scholar 

  • Stahl CH, Han YM, Roneker KR, House WA, Lei XG (1999) Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J. Anim. Sci. 77: 2135–2142.

    PubMed  Google Scholar 

  • Stahl CH, Wilson DB, Lei XG (2003) Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol. Lett. 25: 827–831.

    PubMed  Google Scholar 

  • Tatala S, Svanberg U, Mduma B (1998) Low dietary iron availability is a major cause of anemia: a nutrition survey in the Lindi district of Tanzania. Am. J. Clin. Nutr. 68: 171–178.

    PubMed  Google Scholar 

  • Tomschy A, Tessier M, Wyss M, Brugger R, Broger C, Schnoebelen L, Van Loon APGM, Pasamontes M (2000) Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Sci. 9: 1304–1311.

    PubMed  Google Scholar 

  • Ullah AHJ, Phillippy BQ (1994) Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates. J. Agric. Food Chem. 42: 423–425.

    Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Lei XG, Mullaney EJ (2000) Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Biochem. Biophys. Res. Commun. 275: 279–285.

    PubMed  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (2002) Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochem. Biophys. Res. Commun. 290: 1343–1348.

    PubMed  Google Scholar 

  • Van Etten RL (1982) Human prostatic acid phosphatase: a histidine phosphatase. Ann. NY Acad. Sci. 390: 27–51.

    PubMed  Google Scholar 

  • Van Hartingsveldt W, Van Zeijl CMJ, Harteveld M, Gouka RJ, Suykerbuyk MEG, Luiten RGM, Van paridon PA, Selten GCM, Veenstra AE, Van Gorcom RFM, Van den Hondel CAMJJ (1993) Cloning, characterization and overexpression of the phytaseencoding gene (phyA) of Aspergillus niger. Gene 127: 87–94.

    PubMed  Google Scholar 

  • Veum TL, Ledoux DR, Raboy V, Ertl DS (2001) Low-phytic acid corn improves nutrient utilization for growing pigs. J. Anim. Sci. 79: 2873–2880.

    PubMed  Google Scholar 

  • Vincent JB, Crowder MW, Averill BA (1992) Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem. Sci. 17: 105–110.

    PubMed  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Rémy R, Fimbel R, Oesterhelt G, Lehmann M, Van Loon APGM (1999a) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol. 65: 367–373.

    PubMed  Google Scholar 

  • Wyss M, Pasamontes L, Friedlein A, Rémy R, Tessier M, Kronenberger A, Middendorf A, Lehmann A, Scnoebelen L, Röthlisberger U, Kusznir E, Wahl G, Müller F, Lahm HW, Vogel K, Van Loon APGM (1999b) Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65: 359–366.

    PubMed  Google Scholar 

  • Wyss M, Pasamontes L, Rémy R, Kohler J, Kusznir E, Gadient M, Müller F, Van Loon APGM (1998) Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Appl. Environ. Microbiol. 64: 4446–4451.

    PubMed  Google Scholar 

  • Xavier EG, Cromwell GL, Lindemann MD (2003) Phytase addtions to conventional orlow-phytate corn-soybean mea diets on phosphorus balance in growing pigs. J. Anim. Sci. 81 (Suppl. 1): 258.

    Google Scholar 

  • Yi Z, Kornegay ET, Ravindran V, Denbow DM (1996) Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poultry Sci. 75: 240–249.

    Google Scholar 

  • Zyla K, Ledoux DR, Veum TL (1995) Complete enzymatic dephosphorilation of corn-soybean meal feed under simulated intestinal conditions of the turkey. J. Agric. Food Chem. 43: 288–294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gen Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, X.G., Porres, J.M. Phytase enzymology, applications, and biotechnology. Biotechnology Letters 25, 1787–1794 (2003). https://doi.org/10.1023/A:1026224101580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026224101580

Navigation