Skip to main content
Log in

Mechanism of Coking on Metal Catalyst Surfaces: I. Thermodynamic Analysis of Nucleation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Thermodynamic analysis of carbon nucleation on a metal surface is carried out. The fundamental equation is obtained that relates the critical radius of a nucleus and reaction parameters, such as temperature, metal particle oversaturation by carbon, the work of metal adhesion to graphite, and the metal–carbon bond energy. The results are compared with experimental data and conditions for the formation of carbon deposits of various kinds on metal particles are analyzed. A new mechanism for the formation of carbon nanotubes with a “bamboo” structure is proposed. This mechanism is based on a periodical change in the degree of metal particle oversaturation by carbon. The optimal conditions for the synthesis of single-wall nanotubes are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Buyanov, R.A., Zakoksovanie katalizatorov (Catalyst Coking), Novosibirsk: Nauka, 1983.

    Google Scholar 

  2. Rostrup-Nielsen, J.R., J. Catal., 1984, vol. 85, p. 31.

    Google Scholar 

  3. Hughes, R., Dezaktivatsiya katalizatorov (Catalyst Deactivation), Moscow: Khimiya, 1983, p. 280.

    Google Scholar 

  4. Deactivation and Poisoning of Catalysts, New York: Var. Dekker, 1985, p. 327.

  5. Trimm, D.L., Catal. Rev. - Sci. Eng., 1977, vol. 16, p. 155.

    Google Scholar 

  6. Rostrup-Nielsen, J.R. and Trimm, D.L., J. Catal., 1977, vol. 48, p. 155.

    Google Scholar 

  7. Baker, R., T.K. Carbon Fibers, Filaments, and Composites, Figueiredo, J.L., Ed., Dordrecht: Kluwer, 1990, p. 405.

    Google Scholar 

  8. Rodriguez, N., J. Mater. Res., 1993, vol. 8, p. 3233.

    Google Scholar 

  9. Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H.A., Graphite Fibers and Filaments, Berlin: Springer, 1988, p. 20.

    Google Scholar 

  10. De Jong, K.P. and Geus, J.W., Catal. Rev. - Sci. Eng., 2000, vol. 42, no.4, p. 481.

    Google Scholar 

  11. Carbon Filaments and Nanotubes: Common Origins, Differing Application s?, Biro, L.P., Bernardo, C.A., Tibbets, G.G., and Lambin, Ph., Eds., Dordrecht: Kluwer Academic, 2001, vol. 372.

    Google Scholar 

  12. Iijima, S., Nature, 1991, vol. 354, p. 56.

    Google Scholar 

  13. Endo, M., Saito, R., Dresselhaus, M.S., and Dresselhaus, G., Carbon Nanotubes: Preparation and Properties, Boca Raton: CRC, 1997, p. 54.

    Google Scholar 

  14. Ajayan, P., Chem. Rev., 1999, vol. 99, p. 1787.

    Google Scholar 

  15. Ebbesen, W.T., Carbon Nanotubes: Preparation and Properties, Boca Raton: CRC, 1997, p. 225.

    Google Scholar 

  16. Eletskii, A.V., Usp. Fiz. Nauk, 1997, vol. 167, no.9, p. 945.

    Google Scholar 

  17. Deryagin, B.M. and Fedoseev, D.V., Usp. Khim., 1970, vol. 39, no.9, p. 1661.

    Google Scholar 

  18. Wong, M.-S., Lu, C.-A., Chang, H.-K., Yang, T.S., Wu, J.-H., and Liou, Y., Thin Solid Films, 2000, vols. 377-378, p. 274.

    Google Scholar 

  19. Lux, B. and Haubner, R., Diamond and Diamond-like Films and Coating, Clausing, R.E., Ed., New York: Plenum, 1991.

    Google Scholar 

  20. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J., J. Catal., 1972, vol. 26, p. 51.

    Google Scholar 

  21. Buyanov, R.A., Afanas'ev, A.D., and Chesnokov, V.V., Kinet. Katal., 1979, vol. 20, p. 207.

    Google Scholar 

  22. Oberlin, A., Endo, M., and Koyama, T., Carbon, 1976, vol. 14, p. 133.

    Google Scholar 

  23. Krivoruchko, O.P., Zaikovskii, V.I., and Zamaraev, K.I., Dokl. Akad. Nauk, 1993, vol. 329, p. 744.

    Google Scholar 

  24. Gamaly, E.G., Carbon Nanotubes: Preparation and Properties, Ebbesen, T.W., Ed., Boca Raton: CRC, 1997, p. 180.

    Google Scholar 

  25. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science, 1996, vol. 273, p. 483.

    Google Scholar 

  26. Kiang, C.-H. and Goddard III, W.A., Phys. Rev. Lett., 1996, vol. 76, p. 2515.

    Google Scholar 

  27. Kataura, H., Kimura, A., Ohtsuka, Y., Suzuki, S., Maniwa, Y., Hanyu, T., and Achiba, Y., Jpn. J. Appl. Phys., 1998, vol. 37, p. 616.

    Google Scholar 

  28. Zakharov, D.N., Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Inst. of Crystallography, 2001.

    Google Scholar 

  29. Tibbetts, G.G., J. Cryst. Growth, 1984, vol. 66, p. 632.

    Google Scholar 

  30. Kanzow, H. and Ding, A., Phys. Rev. B, 1999, vol. 60, no.15, p. 11180.

    Google Scholar 

  31. Kanzow, H., Bernier, P., and Ding, A., Appl. Phys. A, 2002, vol. 74, p. 411.

    Google Scholar 

  32. Kuznetsov, V.L., Chuvilin, A.L., Butenko, Y.V., Stankus, S.V., Khairulin, R.A., and Gutakovskii, A.K., Chem. Phys. Lett., 1998, vol. 289, p. 353.

    Google Scholar 

  33. Nikolaev, P.N., Thess, A., Rinzler, A.G., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett., 1997, vol. 266, nos.5-6, p. 422.

    Google Scholar 

  34. Bougrine, A., Dupont-Pavlovsky, N., Naji, A., Ghanbaja, J., Mareche, J.F., and Billaud, D., Carbon, 2001, vol. 39, p. 685.

    Google Scholar 

  35. Tontegode, A.Ya. and Rut'kov, E.V., Fiz. Tverd. Tela0, 1987, vol. 29, p. 1306.

    Google Scholar 

  36. Tontegode, A.Ya., Poverkhnost., 1988, vol. 8, p. 13.

    Google Scholar 

  37. Dulot, F., Eugene, J., Kierren, B., Malterre, D., and Eltsov, K.N., Phys. Low-Dim. Struct., 1999, vols. 1/2, p. 217.

    Google Scholar 

  38. Gavillet, J., Loiseau, A., Journet, C., Willaime, F., Ducastelle, F., and Charlier, J.-C., Phys. Rev. Lett., 2001, vol. 87, no.27, p. 275504.

    Google Scholar 

  39. Kuznetsov, V.L., Usoltseva, A.N., Chuvilin, A.L., Obraztsova, E.D., and Bonard, J.-M., Phys. Rev. B, 2001, vol. 64, p. 235401.

    Google Scholar 

  40. Naidich, Yu.V., Perevertailo, V.M., Lavrinenko, I.A., Kolisnichenko, G.A., and Zhuravlev, V.S., Poverkhnost-nye svoistva rasplavov i tverdykh tel i ikh ispol'zovanie v materialovedinii (Surface Properties of Melts and Solids and Their Use in Material Science), Naidicha, Yu.V., Ed., Kiev: Naukova Dumka, 1991, p. 64

    Google Scholar 

  41. Rodriguez, N.M., Chambers, A., and Baker, R.T.K., Langmuir, 1995, vol. 11, p. 3862.

    Google Scholar 

  42. Endo, M., J. Phys. Chem. Solids, 1993, vol. 54, no.12, p. 1841.

    Google Scholar 

  43. Saito, Y., J. Phys. Chem. Solids, 1993, vol. 54, no.12, p. 1849.

    Google Scholar 

  44. Saito, Y., Carbon, 1995, vol. 33, no.7, p. 979.

    Google Scholar 

  45. Kovalevski, V.V. and Safronov, A.N., Carbon, 1998, vol. 36, nos.7-8, p. 963.

    Google Scholar 

  46. Wang, X., Hu, W., Liu, Y., Long, C., Xu, Y., Zhou, S., Zhu, D., and Dai, L., Carbon, 2001, vol. 39, p. 1533.

    Google Scholar 

  47. Blank, V.D., Gorlova, I.G., Hutchison, J.L., Kiselev, N.A., Ormont, A.B., Polyakov, E.V., Sloan, J., Zakharov, D.N., and Zybtsev, S.G., Carbon, 2000, vol. 38, p. 1217.

    Google Scholar 

  48. Baker, R.T.K., Chludzinski, J.J., and Lund, C.R.F., Extended Abstracts of the 18th Biennial Conference on Carbon, Worcester Polytechnic Institute: American Carbon Society, 1987, p. 155.

    Google Scholar 

  49. Endo, M. and Komaki, K., Extended Abstracts, of the 16th Biennial Conference on Carbon, San Diego, CA, American Carbon Society, University Park, PA, 1983, p. 523.

    Google Scholar 

  50. Tibbetts, G.G., Devour, M.G., and Rodda, E.J., Carbon, 1987, vol. 25, p. 367.

    Google Scholar 

APPENDIX

  1. Downs, W.B. and Baker, R.T.K. J. Mater. Res., 1995, vol. 10, p. 625.

    Google Scholar 

  2. Ivanov, V., Nagy, J.B., Lambin, Ph., Lucas, A., Zhang, X.B., and Zhang, X.F., Bernaerts, D., van Tendeloo, G., Amelinckx, S., and van Landuyt J., Chem. Phys. Let., 1994, vol. 223, p. 329.

    Google Scholar 

  3. Hernadi, K., Fonseca, A., Nagy, J.B., Bernaerts, D., and Lucas, A.A., Carbon, 1996, vol. 34, p. 1249.

    Google Scholar 

  4. Bladh, K., Folk, L.K.L., and Rohmund, F., Appl. Phys. A, 2000, vol. 70, p. 317.

    Google Scholar 

  5. Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., and Eklund, P.C., Phys. Rev. Let., 1998, vol. 80, p. 3779.

    Google Scholar 

  6. Peigney, A., Laurent, Ch., Dobigeon, F., and Rousset, A., J. Mater. Res., 1997, vol. 12, p. 613.

    Google Scholar 

  7. Cheng, H.M., Li, F., Sun, X., Brown, S.D.M., Pimenta, M.A., Marucci, A., Dresselhaus, G., and Dresselhaus, M.S., Chem. Phys. Lett., 1998, vol. 289, p. 602.

    Google Scholar 

  8. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science, 1996, vol. 273, p. 483.

    Google Scholar 

  9. Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett., 1996, vol. 260, p. 471.

    Google Scholar 

  10. Yudasaka, M., Yamada, R., Sensui, N., Wilkins, T., Ichihashi, T., and Iijima, S., J. Phys. Chem. B., 1999, vol. 103, p. 6224.

    Google Scholar 

  11. Qin, L.-C. and Iijima, S., Chem. Phys. Let., 1997, vol. 269, p. 65.

    Google Scholar 

  12. Takahashi, H., Sugano, M., Kasuya, A., Saito, Y., Kayama, T., and Nishina, Y., J. Mater. Sci. Eng. A: Struct. Mater., 1996, vol. 217, p. 48.

    Google Scholar 

  13. Saito, Y., Okuda, M., Fujimoto, N., Yoshikawa, T., Tomita, M., and Hayashi, T., Jpn. J. Appl. Phys., 1994, vol. 33, p. L526.

    Google Scholar 

  14. Williams, K.A., Tachibana, M., Allen, J.L., Grigorian, L., Cheng, S-C., Fang, S.L., Sumanasekera, G.U., Loper, A.L., Williams, J.H., and Eklund, P.C., Chem. Phys. Lett., 1999, vol. 310, p. 31.

    Google Scholar 

  15. Saito, Y., Koyama, T., and Kawabata, K., Z. Phys. D, 1997, vol. 40, p. 421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, V.L., Usol'tseva, A.N. & Butenko, Y.V. Mechanism of Coking on Metal Catalyst Surfaces: I. Thermodynamic Analysis of Nucleation. Kinetics and Catalysis 44, 726–734 (2003). https://doi.org/10.1023/A:1026114710969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026114710969

Keywords

Navigation