Skip to main content
Log in

Wavefunction Collapse and Random Walk

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Wavefunction collapse models modify Schrödinger's equation so that it describes the rapid evolution of a superposition of macroscopically distinguishable states to one of them. This provides a phenomenological basis for a physical resolution to the so-called “measurement problem.” Such models have experimentally testable differences from standard quantum theory. The most well developed such model at present is the Continuous Spontaneous Localization (CSL) model in which a universal fluctuating classical field interacts with particles to cause collapse. One “side effect” of this interaction is that the field imparts energy to the particles: experimental evidence on this has led to restrictions on the parameters of the model, suggesting that the coupling of the classical field to the particles must be mass-proportional. Another “side effect” is that the field imparts momentum to particles, causing a small blob of matter to undergo random walk. Here we explore this in order to supply predictions which could be experimentally tested. We examine the translational diffusion of a sphere and a disc, and the rotational diffusion of a disc, according to CSL. For example, we find that the rms distance an isolated 10−5 cm radius sphere diffuses is ≈(its diameter, 5 cm) in (20 sec, a day), and that a disc of radius 2 ⋅ 10−5 cm and thickness 0.5 ⋅ 10−5 cm diffuses through 2πrad in about 70 sec (this assumes the “standard” CSL parameter values). The comparable rms diffusions of standard quantum theory are smaller than these by a factor 10−3±1. It is shown that the CSL diffusion in air at STP is much reduced and, indeed, is swamped by the ordinary Brownian motion. It is also shown that the sphere's diffusion in a thermal radiation bath at room temperature is comparable to the CSL diffusion, but is utterly negligible at liquid He temperature. Thus, in order to observe CSL diffusion, the pressure and temperature must be low. At the low reported pressure of 5 ⋅ 10−17 Torr, achieved at 4.2°K, the mean time between air molecule collisions with the (sphere, disc) is ≈(80, 45)min. This is ample time for observation of the putative CSL diffusion with the standard parameters and, it is pointed out, with any parameters in the range over which the theory may be considered viable. This encourages consideration of how such an experiment may actually be performed, and the paper closes with some thoughts on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Naturwiss. 23, 807(1935).

    Google Scholar 

  2. P. Pearle, Phys. Rev. A 39, 2277(1989).

    Google Scholar 

  3. G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78(1990).

    Google Scholar 

  4. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470(1986); G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 36, 3287 (1987); G. C. Ghirardi, A. Rimini, and T. Weber Found. Phys. 18, l(1988). F. Benatti, G. C. Ghirardi, A. Rimini, and T. Weber, Nuovo Cimento B 100, 27(1987); F. Benatti, G. C. Ghirardi, A. Rimini, and T. Weber, Nuovo Cimento B 101, 333(1988). J. Bell, in Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987), p. 201.

    Google Scholar 

  5. P. Pearle, Phys. Rev. D 13, 857(1976); Int. Theor. Phys. 48, 489(1979; Found. Phys. 12, 249(1982); Phys. Rev. D 29, 235(1984); in The Wave-Particle Dualism, S. Diner et al., eds. (Reidel, Dordrecht, 1984); J. Stat. Phys. 41, 719(1985); in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986); Phys. Rev. D 33, 2240(1986); in New Techniques in Quantum Measurement Theory, D. M. Greenberger, ed. (N.Y. Acad. Sci., New York, 1986), p. 539.

    Google Scholar 

  6. For some other collapse models, see N. Gisin, Helv. Phys. Acta 62, 363(1989). V. P. Belavkin, Phys. Lett. A 140, 355(1989). I. C. Percival, Proc. Roy. Soc. A 451, 503(1995) I. C. Percival and Quantum State Diffusion (Cambridge University Press, Cambridge, 1998). L. P. Hughston, Proc. Roy. Soc. A 452, 953(1995). R. Penrose, Gen. Rel. and Grav. 28, 581(1996). D. Fivel, Phys. Rev. A 56, 146(1997). S. L. Adier and L. P Horwitz, J. Math. Phys. 41, 2485(2000).

    Google Scholar 

  7. For a recent review of CSL, see P. Pearle in Open Systems and Measurement in Relativistic Quantum Theory, H. P. Breuer and F. Petruccione, eds. (Springer, Heidelberg, 1999), p. 195.

    Google Scholar 

  8. G. C. Ghirardi and A. Rimini, in Sixty-Two Years of Uncertainty, A. Miller, ed. (Plenum, New York, 1990), p. 167.

    Google Scholar 

  9. E. J. Squires, Phys. Lett. A 158, 431(1991).

    Google Scholar 

  10. L. E. Ballentine, Phys. Rev. A 43, 9(1991).

    Google Scholar 

  11. P. Pearle and E. Squires, Phys. Rev. Lett. 73, 1(1994).

    Google Scholar 

  12. B. Collett, P. Pearle, F. Avignone, and S. Nussinov, Found. Phys. 25, 1399(1995).

    Google Scholar 

  13. P. Pearle, James Ring, J. I. Collar, and F. T. Avignone, III, Found. Phys. 29, 465(1999).

    Google Scholar 

  14. F. Karolyhazy, Nuovo Cimento A 42, 1506(1966). F. Karolyhazy, A. Frenkel, and B. Lukacs, in Physics as Natural Philosophy, A. Shimony and H. Feshbach, eds. (M.I.T. Press, Cambridge 1982), p. 204; in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 109; A. Frenkel, Found. Phys. 20, 159(1990).

    Google Scholar 

  15. F. Benatti, G. C. Ghirardi, and R. Grassi, Found Phys. 35, 5(1995).

    Google Scholar 

  16. A. Bassi and G. C. Ghirardi, Brit. J. Phil. Sci. 50, 719(1999).

    Google Scholar 

  17. L. Diosi, Phys. Lett. A 132, 233(1988).

    Google Scholar 

  18. L. Diosi, Phys. Rev. A 40, 1165(1989).

    Google Scholar 

  19. G. Gabrielse et al., Phys. Rev. Lett. 65, 1317(1990).

    Google Scholar 

  20. For a nice treatment, see R. M. Mazo in Stochastic Processes in Nonequilibrium Systems, Lecture Notes in Physics, Vol. 84, L. Garrido, P. Seglar, and P. J. Shepard, eds. (Springer, Berlin, 1978), p. 53.

    Google Scholar 

  21. R. A. Millikan, Phys. Rev. 32, 349(1911); Phys. Rev. 22, 1 (1923).1

    Google Scholar 

  22. M. D. Allen and O. G. Raabe, Aerosol Sci. and Tech. 4, 269(1985).

    Google Scholar 

  23. E. Cunningham, Proc. Roy. Soc. 83, 357(1910).

    Google Scholar 

  24. P. S. Epstein, Phys. Rev. 23, 710(1924).

    Google Scholar 

  25. A. Einstein and L. Hopf, Ann. Phys. 33, 1105(1910).

    Google Scholar 

  26. A. Einstein, Phys. Z. 10, 185(1909).

    Google Scholar 

  27. A. Einstein, Ann. Phys. 17, 549(1905).

    Google Scholar 

  28. E. N. daC. Andrade and R. C. Parker, Proc. Roy. Soc. 159, 507(1937).

    Google Scholar 

  29. H. Lamb, Hydrodynamics (Dover, New York, 1945), p. 605.

    Google Scholar 

  30. A. Einstein, Ann. Phys. 19, 371(1906).

    Google Scholar 

  31. H. Lamb, op. cit., p. 589.

  32. P. Pearle, Found. Phys. 30, 1145(2000).

    Google Scholar 

  33. We are indebted to Frank Avignone for supplying recent data and to Jim Ring for analyzing it.

  34. Q. Fu, Phys. Rev. A 56, 1806(1997).

    Google Scholar 

  35. G. C. Ghirardi, R. Grassi, and A. Rimini, Phys. Rev. A 42, 1057(1990).

    Google Scholar 

  36. P. Pearle and E. Squires, Found. Phys. 26, 291(1996).

    Google Scholar 

  37. F. Aicardi, A. Borsellino, G. C. Ghirardi, and R. Grassi, Found. Phys. Lett. 4, 109(1991).

    Google Scholar 

  38. B. T. Chen et al., J. Aerosol. Sci. 24, 181(1993).

    Google Scholar 

  39. D. M. Tanenbaum et al., J. Vac. Sci., submitted; Cornell Project 789-99.

  40. W. Paul, Rev. Mod. Phys. 60, 531(1990).

    Google Scholar 

  41. R. F. Wuerker et al., J. Appl. Phys. 30, 342(1958).

    Google Scholar 

  42. S. Arnold, J. H. Li, S. Holler, A. Korn, and A. F. Izmailov, J. Appl. Phys. 78, 3566(1995).

    Google Scholar 

  43. S. Arnold, L. M. Foley, and A. Korn, J. Appl. Phys. 74, 4291(1993).

    Google Scholar 

  44. J. S. Hoye and I. Brevik, Physica A 196, 241(1993). We would like to thank Peter Milonni for calling our attention to this paper.

    Google Scholar 

  45. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), p. 414.

    Google Scholar 

  46. J. D. Jackson, ibid., p. 805.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collett, B., Pearle, P. Wavefunction Collapse and Random Walk. Foundations of Physics 33, 1495–1541 (2003). https://doi.org/10.1023/A:1026048530567

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026048530567

Navigation