Skip to main content
Log in

Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Reducing agents required in the dyeing process for vat and sulfur dyes cannot be recycled and lead to problematic waste products. The electrochemical reduction of indigo on a fixed bed cathode consisting of graphite granules has been investigated by spectrophotometric experiments in laboratory cells. Experiments yield information about the kinetics and show the possibility of this process for production of water soluble leuco indigo, which offers environmental benefits. The influence of noble metals deposited on the granules and of different pretreatment methods of the graphite is demonstrated. In addition, the immobilization of quinoid molecules on the graphite surface has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Marte, Int. Text. Bull., ITB Veredlung 41 (1995) 33.

    Google Scholar 

  2. T. Bechtold and A. Turcanu, J. Electrochem. Soc. 149 (2002) D7.

    Google Scholar 

  3. A. Roessler, O. Dossenbach, U. Meyer, W. Marte and P. Rys, Chimia 55 (2001) 879.

    Google Scholar 

  4. A. Roessler, D. Crettenand, O. Dossenbach, U. Meyer, W. Marte and P. Rys, Electrochim. Acta 47 (2002) 1989.

    Google Scholar 

  5. A. Roessler, O. Dossenbach, W. Marte and P. Rys, J. Appl. Electrochem. 32 (2002) 647.

    Google Scholar 

  6. C. Merk, J. Botzem, G. Huber and N. Grund, Patent WO 01/ 46497 (2001).

  7. C. Merk, G. Huber and A. Weiper-Idelmann, in J. Yoshida, D.G. Peters, M.S. Workentin, (Eds), Reactive Intermediates in Organic and Biological Electrochemistry, In Honor of the Late Professor Eberhard Steckhan, PV 2001-14 (The Electrochemical Society Proceedings Series, Washington, DC, 2001), p. 121.

    Google Scholar 

  8. A. Roessler, O. Dossenbach and P. Rys, J. Electrochem. Soc. 150 (2003) D1.

    Google Scholar 

  9. A. Roessler, O. Dossenbach, W. Marte and P. Rys, Dyes and Pigment 54 (2002) 141.

    Google Scholar 

  10. A.M. Bond, F. Marken, E. Hill, R.G. Compton and H. Hügel, J. Chem. Soc., Perkin Trans. 2 28 (1997) 1735.

    Google Scholar 

  11. S. Komorsky-Lovric, J. Electroanal. Chem. 482 (2000) 222.

    Google Scholar 

  12. M. Rowe and J.St.H. Davies, J. Chem. Soc. 117 (1920) 1344.

    Google Scholar 

  13. M. Lauwiner, P. Rys and J. Wissmann, Applied Catalysis, A: General 172 (1998) 141.

    Google Scholar 

  14. F. Atamny and A. Baiker, Surf. Interface Anal. 27 (1999) 512.

    Google Scholar 

  15. H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joussen and B. Korall, Angew. Chem. 103 (1991) 1344.

    Google Scholar 

  16. P. Ramesh and S. Sampath, Analyst 136 (2001) 1872.

    Google Scholar 

  17. J.C. Sheehan and G.P. Hess, J. Am. Chem. Soc. 77 (1955) 1067.

    Google Scholar 

  18. J.N. Etters, J. Soc. Dyers Colourists 109 (1993) 251.

    Google Scholar 

  19. J.F. Richardson and W.N. Zaki, Trans. Inst. Chem. Eng. 32 (1954) 35.

    Google Scholar 

  20. Y.G. Ryu, S.I. Pyun, C.S. Kim and D.R. Shin, Carbon 36 (1998) 293.

    Google Scholar 

  21. B. Donnet, Carbon 6 (1968) 161.

    Google Scholar 

  22. V.A. Garten and D.E. Weiss, Aust. J. Chem. 10 (1957) 309.

    Google Scholar 

  23. V.A. Garten and D.E. Weiss, Aust. J. Chem. 8 (1955) 68.

    Google Scholar 

  24. K. Kinoshita, ‘Carbon, Electrochemical and Physicochemical Properties’ (J. Wiley & Sons, New York, 1998).

    Google Scholar 

  25. N.N. Nemerovets, V.F. Surovikin, S.V. Orekhov, G.V. Sazhin and N.G. Saovnichuk, Solid Fuel Chemistry (Engl. Transl. of Khim. Tverd. Topl.) 14 (1980) 104.

    Google Scholar 

  26. L.P. Gilyazetdinov, V.I. Romanova, A.S. Lutokhina, É.I. Tsygankova and I.M. Safronova, J. Appl. Chem. USSR (Engl. Transl. of Zhurnal Prikladnoi Khimii) 49 (1976) 420.

    Google Scholar 

  27. M. Acedo-Ramos, V. Gomez-Serrano, C. Valenzuela-Calahorro and A.J. Lopez-Peinado, Spectrosc. Lett. 26 (1993) 1117.

    Google Scholar 

  28. A.V. Melezhik, L.V. Makarova and A.A. Chuiko, Russian J. Inorg. Chem. (Engl. Transl. Zhurnal Neorganicheskoi Khimii) 34 (1989) 196.

    Google Scholar 

  29. A. Banerjee, B.K. Mazumdar and A. Lahiri, Nature 193 (1962) 267.

    Google Scholar 

  30. A. Voet and A.C. Teter, Am. Ink Maker 38 (1960) 44.

    Google Scholar 

  31. A. Roessler, PhD thesis No. 15 120, ETH Zurich (2003).

  32. R.L. McCreery, Electroanal. Chem. 17 (1991) 221.

    Google Scholar 

  33. R.C. Engstrom, Anal. Chem. 54 (1982) 2310.

    Google Scholar 

  34. J. Schreurs and E. Barendrecht, Recl. Trav. Chim. Pays-Bas. 103 (1984) 205.

    Google Scholar 

  35. T. Bechtold, E. Burtscher and A. Turcanu, J. Electroanal. Chem. 465 (1999) 80.

    Google Scholar 

  36. K.S. Tschyong and F.I. Sadow, Textil Praxis 24 (1969) 454.

    Google Scholar 

  37. A.P. Brown and F.C. Anson, Anal. Chem. 49 (1977) 2589.

    Google Scholar 

  38. M. Sharp, Electrochim. Acta 23 (1978) 287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Dossenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roessler, A., Crettenand, D., Dossenbach, O. et al. Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules. Journal of Applied Electrochemistry 33, 901–908 (2003). https://doi.org/10.1023/A:1025876114390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025876114390

Navigation