Skip to main content
Log in

Solubility of Oxygen in Some 1-1, 2-1, 1-2, and 2-2 Electrolytes as a Function of Concentration at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of oxygen has been measured in a number of electrolytes [(LiCl, KCl, RbCl, CsCl, NaF, NaBr, NaI, NaNO3, KBr, KI, KNO3, CaCl2, SrCl2, BaCl2, Li2SO4, K2SO4, Mn(NO3)3)] as a function of concentration at 25°C. The solubilities, μmol (kg-H2O)−1, have been fitted to a function of the molality m (standard deviation σ < 3μmol-kg−1)

$$\ln \left( {\left[ {{\text{O}}_{\text{2}} } \right]^0 /\left[ {{\text{O}}_{\text{2}} } \right]} \right) = \ln \gamma \left( {{\text{O}}_2 } \right) = Am + Bm^2 $$

where A and B are adjustable parameters and the activity coefficient of oxygen γ)O2) = [O2]0/[O2]. The limiting salting coefficient, k S = (∂ln γ/∂ m)m=0 = A, was determined for all salts. The salting coefficients for the chlorides and sodium salts showed a near linear correlation with the crystal molar volume V cryst = 2.52 r 3. The salting coefficients determined from the Scaled Particle Theory were in reasonable agreement with the measured values. The activity coefficients of oxygen in the solutions have been interpreted using the Pitzer equation

$$\ln \gamma _{{\text{O}}_{\text{2}} } = 2\sum\limits_{\text{c}} {\lambda _{{\text{O}}_{\text{2}} {\text{c}}} m_{\text{c}} /m^{\text{0}} + 2\sum\limits_{\text{a}} {\lambda _{{\text{O}}_{\text{2}} {\text{a}}} m_{\text{a}} + } \sum\limits_{\text{c}} {\sum\limits_{\text{a}} {m_{\text{c}} m_{\text{a}} } } \zeta _{{\text{O}}_{\text{2}} {\text{ca}}} }$$

where \(\lambda _{{\text{O}}_{\text{2}} {\text{i}}} \) is a parameter that accounts for the interaction of O2 with cations (c) and anions (a) with molalities m a and m c, and \(\zeta _{{\text{O}}_{\text{2}} {\text{ca}}}\) accounts for interactions for O2 with the cation and anion pair (c-a). The \(\lambda _{{\text{O}}_{\text{2}} {\text{i}}}\) and \(\zeta _{{\text{O}}_{\text{2}} {\text{ca}}}\) coefficients determined for the most of the ions are in reasonable agreement with the tabulations of Clegg and Brimblecombe. The values of \(\lambda _{{\text{O}}_{\text{2}} {\text{i}}}\) for most of the ions are a linear function of the electrostriction molar volume (Velect = V0V cryst).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. Battino, IUPAC Solubility Data Series: Oxygen and Ozone, Vol. 7 (Pergamon Press, Oxford, 1981).

    Google Scholar 

  2. R. Battino, T. R. Rettitch, and T. Tominaga, J. Phys. Chem. Ref. Data 12, 163(1983).

    Google Scholar 

  3. S. L. Clegg and P. Brimblecombe, Geochim. Cosmochim. Acta 54, 3315(1990).

    Google Scholar 

  4. S. D. Cramer, Ind. Eng. Chem. Process Design Develop. 19, 300(1980).

    Google Scholar 

  5. J. E. Sherwood, F. Stagnitti, M. J. Kokkinn, and W. D. Williams, Limnol. Oceanogr. 36, 235(1991).

    Google Scholar 

  6. F. J. Millero, Marine Chem. 70, 5(2000).

    Google Scholar 

  7. F. J. Millero Physical Chemistry of Natural Waters Wiley (Interscience), New York, 2001).

    Google Scholar 

  8. F. J. Millero, F. Huang, and A. L. Laferriere, Geochim. Cosmochim. Acta 66, 2349(2002).

    Google Scholar 

  9. F. J. Millero, F. Huang, and A. L. Laferriere, Marine Chem. 78, 217(2002).

    Google Scholar 

  10. J. Setschenow, J. Phys. Chem. 4, 117(1899).

    Google Scholar 

  11. M. Randall, and C. F. Failey, Chem. Rev. 4, 211(1927).

    Google Scholar 

  12. F. A. Long and W. F. McDevit, Chem. Rev. 51, 119(1952).

    Google Scholar 

  13. R. A. Pierotti, J. Phys. Chem. 69, 281(1965).

    Google Scholar 

  14. R. A. Pierotti, Chem. Rev. 76, 717(1976).

    Google Scholar 

  15. W. L. Masterton and T. P. Lee, J. Phys. Chem. 74, 1776(1970).

    Google Scholar 

  16. W. L. Masterton, J. Solution Chem. 4, 523(1975).

    Google Scholar 

  17. E. M. Pawllkowski and J. M. Prausnitz, Ind. Eng. Chem. Fund. 22, 86(1983).

    Google Scholar 

  18. K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, K. S. Pitzer, ed., 2nd edn, Vol. I (CRC Press, Boca Raton, FL, 1991), p. 75.

    Google Scholar 

  19. C. E. Harvie, N. Møller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723(1984).

    Google Scholar 

  20. A. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2771(1986).

    Google Scholar 

  21. F. J. Millero and D. Pierrot, Aqua. Geochem. 4, 153(1998).

    Google Scholar 

  22. J. M. Simonson, R. N. Roy, J. Connole, L. N. Roy, and D. A. Johnson, J. Solution Chem. 17, 791(1987).

    Google Scholar 

  23. J. M. Simonson, R. N. Roy, D. Mrad, P. Lord, L. N. Roy, and D. A. Johnson, J. Solution Chem. 17, 435(1988).

    Google Scholar 

  24. F. J. Millero and A. Poisson, Deep-Sea Res. 28, 625(1981).

    Google Scholar 

  25. J. H. Carpenter, Limnol. Oceanogr. 10, 141(1965).

    Google Scholar 

  26. P. J. leB. Williams and N.W. Jenkinson, Limnol. Oceanogr. 27, 576(1982).

    Google Scholar 

  27. B. B. Benson and D. KrauseJr., Limnol. Oceanogr. 29, 620(1984).

    Google Scholar 

  28. H. E. Garcia and L. I. Gordon, Limnol. Oceanogr. 37, 1307(1992).

    Google Scholar 

  29. C. V. Krishnan and H. L. Friedman, J. Solution Chem. 3, 727(1974).

    Google Scholar 

  30. N. E. Khomutov and E. I. Kohhik, Russ. J. Phys. Chem. 48, 359(1974).

    Google Scholar 

  31. A. Yasunishi, J. Chem. Eng. Jpn. 10, 89(1977); Kagaku Kogaku Rombun. 4, 185 (1978).

    Google Scholar 

  32. R. Marcus, Chem. Rev. 88, 1480(1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millero, F.J., Huang, F. & Graham, T.B. Solubility of Oxygen in Some 1-1, 2-1, 1-2, and 2-2 Electrolytes as a Function of Concentration at 25°C. Journal of Solution Chemistry 32, 473–487 (2003). https://doi.org/10.1023/A:1025301314462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025301314462

Navigation