Skip to main content
Log in

Electrosynthesis of hydrogen peroxide in acidic solutions by mediated oxygen reduction in a three-phase (aqueous/organic/gaseous) system Part I: Emulsion structure, electrode kinetics and batch electrolysis

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mediated electrosynthesis of H2O2 in acidic solutions (pH 0.9–3.0) was investigated in a three-phase, aqueous/organic/gaseous system using 2-ethyl-9,10-anthraquinone (EtAQ) as mediator (redox catalyst). The main hydrogen peroxide producing route is the in situ mediating cycle: EtAQ electroreduction–homogeneous oxidation of anthrahydroquinone (EtAQH2). The organic phase was composed of tributylphosphate solvent (TBP) with 0.2 M tetrabutylammonium perchlorate (TBAP) supporting electrolyte, 0.06 M tricaprylmethylammonium chloride (A336) surface active agent, and 0.1–0.2 M EtAQ mediator. Part I of this two part work deals with the physico-chemical characteristics of the emulsion electrolyte (e.g., ionic conductivity, emulsion type, H2O2 partition between the aqueous and organic phases), and kinetic aspects (both electrode and homogenous) of the mediation cycle. Furthermore, batch electrosynthesis experiments are presented employing reticulated vitreous carbon cathodes (specific surface area 1800 m2 m−3) operated at superficial current densities of 500–800 A m−2. During 10 h batch electrolysis involving the emulsion mediated system with O2 purge at 0.1 MPa pressure, H2O2 concentrations in the range 0.53–0.61 M were obtained in 0.1 M H2SO4 (pH 0.9) and 2 M Na2SO4(acidified to pH3). The corresponding apparent current efficiencies were from 46 to 68%. Part II of the present work describes investigations using flow-by fixed-bed electrochemical cells with co-current upward three-phase flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Oloman, ‘Electrochemical Processing for the Pulp and Paper Industry’, The Electrochemical Consultancy, Romsey, UK (1996).

  2. J.R. Anderson and B. Amini, in C.W. Dence and D.W. Reeve, (Eds), ‘Pulp Bleaching: Principles and Practice’ (TAPPI Press, Atlanta, 1996), pp. 117–133.

    Google Scholar 

  3. E.L. Gyenge and C.W. Oloman, J. Appl. Electrochem. 31 (2001) 233.

    Google Scholar 

  4. Z. Qiang, J-H. Chang and C-P. Huang, Water Res. 36 (2002) 85.

    Google Scholar 

  5. O. El Mouahid, C. Coutanceau, E.M. Belgsir, P. Crouigneau, J.M. Leger and C. Lamy, J. Electroanal. Chem. 426 (1997) 117.

    Google Scholar 

  6. C. Degrand, J. Electroanal. Chem. 169 (1984) 259.

    Google Scholar 

  7. M.S. Wrighton, Science 231 (1986) 32.

    Google Scholar 

  8. B. Keita and L. Nadjo, J. Electronal. Chem. 145 (1983) 431.

    Google Scholar 

  9. P. Tissot and A. Huissoud, Electrochim. Acta 41 (1996) 2451.

    Google Scholar 

  10. A. Huissoud and P. Tissot, J. Appl. Electrochem. 28 (1998) 653.

    Google Scholar 

  11. E.L. Gyenge, ‘Phase-transfer mediated electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes’, PhD dissertation, The University of British Columbia, Vancouver, Canada (2001).

    Google Scholar 

  12. A. Paren and T. Tsujino, Japan Tappi J. 52 (1998) 630.

    Google Scholar 

  13. R.F. Knarr, M. Velasco, S. Lynn and C.W. Tobias, J. Electrochem. Soc. 139 (1992) 948.

    Google Scholar 

  14. A. Huissoud and P. Tissot, J. Appl. Electrochem. 29 (1999) 11.

    Google Scholar 

  15. A. Huissoud and P. Tissot, J. Appl. Electrochem. 29 (1999) 17.

    Google Scholar 

  16. M. Nozaki, Japan Tappi J. 52 (1998) 616.

    Google Scholar 

  17. I. Mathur and R. Dawe, Tappi J. 82 (1999) 157.

    Google Scholar 

  18. R. Dworak, H. Feess and H. Wendt, AIChE Symp. Ser. No. 185 75 (1979) 38.

    Google Scholar 

  19. H. Feess and H. Wendt, J. Chem. Tech. Biotechnol. 30 (1980) 297.

    Google Scholar 

  20. H. Feess and H. Wendt, Ber. Buns. Ges. Phys. Chem. 85 (1981) 914.

    Google Scholar 

  21. J.A. Dean (Ed.), ‘Lange's Handbook of Chemistry’ (McGraw-Hill, New York, 1992).

    Google Scholar 

  22. S.H. Maron and C.F. Prutton, ‘Principles of Physical Chemistry’ (Macmillan, London, 4th edn, 1971).

  23. http://www.chevronphillips.matweb.com/brochures/mxdiethybenbro. pdf.

  24. http://www.inchem.org/documents/ehc/ehc/ehc112.htm.

  25. S. Budavari (Ed.), ‘Merck Index’ (Merck & Co., Rahway, NJ, 11th edn, 1989).

    Google Scholar 

  26. L. Sigrist, O. Dossenbach and N. Ibl, J. Appl. Electrochem. 10 (1980) 223.

    Google Scholar 

  27. P. Becher, ‘Emulsions: Theory and Practice’ (Reinhold, New York, 1957).

    Google Scholar 

  28. J.F. Rusling, in B.E. Conway, J.O'M. Bockris and R.E. White (Eds), ‘Modern Aspects of Electrochemistry’, No. 26 (Plenum, New York, 1994).

    Google Scholar 

  29. A. Babaei, P.A. Connor and J.A. McQuillan, J. Chem. Ed. 74 (1997) 1200.

    Google Scholar 

  30. K. Pekmez, M. Can and A. Yildiz, Electrochim. Acta 38 (1993) 607.

    Google Scholar 

  31. V.J. Jennings, T.E. Forster and J. Williams, Analyst 95 (1970) 718.

    Google Scholar 

  32. C. Russel and W. Jaenicke, J. Electroanal. Chem. 180 (1984) 205.

    Google Scholar 

  33. J. Posdorfer, M. Olbrich-Stock and R.N. Schindler, Z. Phys. Chem. 171 (1991) 33.

    Google Scholar 

  34. ‘Reticulated Vitreous Carbon’, Technical literature, ERG Materials and Aerospace Co., Oakland (1996).

  35. E.R. Brown and J.R. Sandifer, in B.W. Rossiter and J.F. Hamilton (Eds), ‘Physical Methods of Chemistry’, Vol. II, ‘Electrochemical Methods’ (J. Wiley & Sons, New York, 2nd edn, 1986). pp. 273–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.L. Gyenge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyenge, E., Oloman, C. Electrosynthesis of hydrogen peroxide in acidic solutions by mediated oxygen reduction in a three-phase (aqueous/organic/gaseous) system Part I: Emulsion structure, electrode kinetics and batch electrolysis. Journal of Applied Electrochemistry 33, 655–663 (2003). https://doi.org/10.1023/A:1025082709953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025082709953

Navigation