Skip to main content
Log in

Effects of the Solvent Refractive Index and Its Dispersion on the Radiative Decay Rate and Extinction Coefficient of a Fluorescent Solute

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

It is well known that the probabilities of radiative transitions in a medium differ from those in vacuum. Excitation of a fluorescent molecule and its radiative decay are examples of radiative transitions. The rates of these processes in solution depend on the optical characteristics of the solvent. In this article the radiative decay rate and the extinction coefficient of a fluorescent molecule in solution are expressed in terms of the intrinsic properties of the fluorescent molecule (electronic transition moments) and the optical characteristics of the solvent (refractive index, group velocity of light). It is shown that the group velocity does not enter in the final expressions for the radiative decay rate and the extinction coefficient; this means that the dispersion of the refractive index has no effect on these quantities. The expressions for both the radiative decay rate and the extinction coefficient contain the refractive index of the solvent and the local field correction factor. The latter depends on the cavity model, and, for some cavity models, on the shape of the cavity. Four types of cavity models are discussed; for each model the limits of applicability are examined. Experimental evidence in support of specific cavity models is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. R. Lakowicz (1999) Principles of Fluorescence Spectroscopy, 2nd ed, Kluwer Academic/Plenum Press, New York.

    Google Scholar 

  2. Y. Ooshika (1954) Absorption spectra of dyes in solution. J. Phys. Soc. Japan 9(4), 594–602.

    Google Scholar 

  3. N. Mataga, Y. Kaifu, and M. Koizumi (1956) Solvent effects upon fluorescence spectra and the dipolemoments of excited molecules. Bull. Chem. Soc. Japan 29(4), 465–470.

    Google Scholar 

  4. E. McRae (1957) Theory of solvent effects on molecular electronic spectra: Frequency shifts. J. Phys. Chem. 61(5), 562–572.

    Google Scholar 

  5. Von E. Lippert (1957) Spektroskopische bestimmung des dipol-momentes aromatischer verbindungen im ersten angeregten sin-gulettzustand. Z. Elektrochem. 61(8), 962–975.

    Google Scholar 

  6. N. G. Bakhshiev (1961) Universal molecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions 1: Theory (liquid solutions). Optics Spectrosc. 10 (6), 717–726.

    Google Scholar 

  7. F. Perrin (1926) Polarisation de la lumiere de fluorescence: Vie moyenne des molecules dans l'etat excite. J. Phys. Radium Serie 6, 7 (12), 390–401.

    Google Scholar 

  8. S. J. Strickler and R. A. Berg (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37(4), 814–822.

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz (1975) The classical theory of fields, 4 th ed, Pergamon Press, New York.

    Google Scholar 

  10. G. Herzberg (1950) Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules, 2nd ed, D. Van Nostrand Co., New York.

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz (1977) Quantum Mechanics: Non-Relativistic Theory, 2nd ed, Pergamon Press, New York.

    Google Scholar 

  12. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii. (1982) Quantum Electrodynamics. 2nd ed. Pergamon Press, New York.

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz (1984) Electrodynamics of Continuous Media, 2nd ed, Pergamon Press, New York.

    Google Scholar 

  14. E. Yablonovitch, T. J. Gmitter, and R. Bhat (1988) Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructures. Phys. Rev. Lett. 61(22), 2546–2549.

    Google Scholar 

  15. R. J. Glauber and M. Lewenstein (1991) Quantum optics of dielectric media. Phys. Rev. A 43(1), 467–491.

    Google Scholar 

  16. D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand (2002) Effect of the solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein. J. Phys. Chem. B 106, 3724–3734.

    Google Scholar 

  17. A. Einstein (1917) Zur quantentheorie der strahlung. Physik. Z. 18, 121–128.

    Google Scholar 

  18. G. Juzeliunas (1995) Molecule-radiation and molecule-molecule processes in condensed media: A microscopic QED theory. Chem. Phys. 198(1–2), 145–158.

    Google Scholar 

  19. T. Förster (1951) Fluoreszenz organischer Verbindungen, Vandenhoeck & Ruprecht, Göttingen.

    Google Scholar 

  20. H. A. Lorentz (1909) The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. Leipzig, Teubner.

  21. N. Q. Chako (1934) Absorption of light in organic compounds. J. Chem. Phys. 2, 644–653.

    Google Scholar 

  22. G. Kortüm (1936). Das optische verhalten gelöster ionen und seine bedeutung für die struktur elektrolytischer lösungen. Z. Physik. Chem. (B) 33(4), 243–264.

    Google Scholar 

  23. W. Liptay (1966). Die lösungsmittelabhängigkeit der intensität von elektronenbanden. I. Theorie. Z. Naturforschg. A 21A(10), 1605–1618.

    Google Scholar 

  24. S. M. Barnett, B. Huttner, and R. Loudon (1992) Spontaneous emission in absorbing dielectric media. Phys. Rev. Lett. 68(25), 3698–3701.

    Google Scholar 

  25. G. L. J. A. Rikken and Y. A. R. R. Kessener (1995) Local field effects and electric and magnetic dipole transitions in dielectrics. Phys. Rev. Lett. 74(6), 880–883.

    Google Scholar 

  26. S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob (1996) Decay of excited atoms in absorbing dielectrics. J. Phys. B: At. Mol. Opt. Phys. 29, 3763–3781.

    Google Scholar 

  27. F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk (1998) Local-field effects on spontaneous emission in a dense supercritical gas. Phys. Rev. Lett. 80(23), 5077–5080.

    Google Scholar 

  28. P. de Vries and A. Lagendijk (1998) Resonant scattering and spontaneous smission in dielectrics: Microscopic derivation of localfield effects. Phys. Rev. Lett. 81(7), 1381–1384.

    Google Scholar 

  29. S. Scheel, L. Knöll, D.-G. Welsch, and S. M. Barnett (1999) Quantum local-field corrections and spontaneous decay. Phys. Rev. A. 60(2), 1590–1597.

    Google Scholar 

  30. M. Fleischhauer (1999) Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases: A Green's-function approach. Phys. Rev. A 60(3), 2534–2539.

    Google Scholar 

  31. S. Scheel, L. Knöll, and D.-G. Welsch (1999) Spontaneous decay of an excited atom in an absorbing dielectric. Phys. Rev. A. 60(5), 4094–4104.

    Google Scholar 

  32. F. J. P. Schuurmans, P. de Vries, and A. Lagendijk (2000) Localfield effects on spontaneous emission of impurity atoms in homogeneous dielectrics. Phys. Lett. A 264(1), 472–477.

    Google Scholar 

  33. F. J. P. Schuurmans and A. Lagendijk (2000) Luminescence of Eu(fod)3 in a homologic series of simple alcohols. J. Chem. Phys. 113(8), 3310–3314.

    Google Scholar 

  34. M. S. Tomas (2001) Local-field corrections to the decay rate of excited molecules in absorbing cavities: The Onsager model. Phys. Rev. A 63(5), 053811–1–053811–11.

  35. V. M. Agranovich and M. D. Galanin (1982) Electronic Excitation Energy Transfer in Condensed Matter, North-Holland, Amsterdam.

  36. T. Shibuya (1983) A dielectric model for the solvent effect on the intensity of light-absorption. J. Chem. Phys. 78(8), 5175–5182.

    Google Scholar 

  37. T. Shibuya (1983) The refractive-index correction to the radiative rate constant. Chem. Phys. Lett. 103(1), 46–48.

    Google Scholar 

  38. C. Q. Cao, W. Long, and H. Cao (1997) The local field correction factor for spontaneous emission. Phys. Lett. A 232, 15–24.

    Google Scholar 

  39. E. V. Tkalya (2001) Spontaneous multipole radiation in a condensed medium. J. Exper. Theoret. Phys. 92(1), 71–79.

    Google Scholar 

  40. E. V. Tkalya (2002) Spontaneous electric multipole emission in a condensed medium and toroidal moments. Phys. Rev. A 65, 022504–1–022504–5.

  41. T. B. Jones (1995) Electromechanics of Particles, Cambridge, New York.

  42. S. Hirayama, H. Yasuda, M. Okamoto, and F. Tanaka (1991) Effect of pressure on the natural radiative lifetimes of anthracene derivatives in solution. J. Phys. Chem. 95(8), 2971–2975.

    Google Scholar 

  43. Y.-P. Sun and M. A. Fox (1993) Fluorescence of 9–cyanoanthracene in supercritical ethane: A very unusual dependence of fluorescence lifetime on solvent refractive index. J. Phys. Chem. 97(2), 282–283.

    Google Scholar 

  44. J. Saltiel, A. S. Waller, D. F. Sears, and C. Z. Garrett (1993) Fluorescence quantum yields of trans-stilbene-d0 and-d2 in n-hexane and n-tetradecane: Medium and deuterium isotope effects on decay process. J. Phys. Chem. 97(11), 2516–2522.

    Google Scholar 

  45. J. K. Rice, E. D. Niemeyer, and F. V. Bright (1996) Solute-fluid coupling and energy dissipation in supercritical fluids: 9–cyanoanthracene in C2H6, CO2, and CF3H. J. Phys. Chem. 100(20), 8499–8507.

    Google Scholar 

  46. S. Hirayama, K. Shobatake, and K. Tabayashi (1985) Lack of a heavy-atom effect on fluorescence lifetimes of 9–cyanoanthracene-rare gas clusters in a supersonic free jet. Chem. Phys. Lett. 121(3), 228–232.

    Google Scholar 

  47. D. Toptygin and L. Brand (1993) Fluorescence decay of DPH in lipid membranes: Influence of the external refractive index. Biophys. Chem. 48(2), 205–220.

    Google Scholar 

  48. D. Toptygin and L. Brand (1995) Determination of DPH order parameters in unoriented vesicles. J. Fluoresc. 5(1), 39–50.

    Google Scholar 

  49. M. M. G. Krishna and N. Periasamy (1998) Fluorescence of organic dyes in lipid membranes: Site of solubilization and effects of viscosity and refractive index on lifetimes. J. Fluoresc. 8(1), 81–91.

    Google Scholar 

  50. M. M. G. Krishna and N. Periasamy (1998) Orientational distribution of linear dye molecules in bilayer membrances. Chem. Phys. Lett. 298(4–6), 359–367.

    Google Scholar 

  51. E. P. Petrov, J. V. Kruchenok, and A. N. Rubinov (1999) Effect of the external refractive index on fluorescence kinetics of pery-lene in human erythrocyte ghosts. J. Fluoresc. 9(2), 111–121.

    Google Scholar 

  52. P. Lavallard, M. Rosenbauer, and T. Gacoin (1996) Influence of surrounding dielectrics on the spontaneous emission of sulforho-damine B molecules. Phys. Rev. A 54(6), 5450–5453.

    Google Scholar 

  53. G. Lamouche, P. Lavallard, and T. Gacoin (1998). Spontaneous emission of dye molecules as a function of the surrounding dielectric medium. J. Luminesc. 76–77, 662–665.

    Google Scholar 

  54. G. Lamouche, P. Lavallard, and T. Gacoin (1999) Optical properties of dye molecules as a function of the surrounding dielectric medium. Phys. Rev. A 59(6), 4668–4674.

    Google Scholar 

  55. K. H. Drexhage (1970) Influence of a dielectric interface on fluor-escence decay time. J. Lumines. 1,2, 693–701.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toptygin, D. Effects of the Solvent Refractive Index and Its Dispersion on the Radiative Decay Rate and Extinction Coefficient of a Fluorescent Solute. Journal of Fluorescence 13, 201–219 (2003). https://doi.org/10.1023/A:1025033731377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025033731377

Navigation