Skip to main content
Log in

Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of ∼20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Hα), 0.980 (13Cα), 0.996 (13Cβ), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http://redpoll.pharmacy.ualberta.ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baker, E.N. and Hubbard, R.E. (1984) Prog. Biophys. Mol. Biol., 44, 97-179.

    Google Scholar 

  • Banci, L., Bertini, I., Savellini, G.G., Romagnoli, A., Turano, P., Cremonini, M.A., Luchinat, C. and Gray, H.B. (1997) Prot. Struct. Funct. Gen., 29, 68-76.

    Google Scholar 

  • Baxter, N.J. and Williamson, M.P. (1997) J. Biomol. NMR, 9, 359-369.

    Google Scholar 

  • Beger, R.D. and Bolton, P.H. (1997) J. Biomol. NMR, 10, 129-142.

    Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucl. Acids Res., 28, 235-242.

    Google Scholar 

  • Bjorndahl, T.C., Watson, M.S., Slupsky, C.M., Spyracopolous, L., Sykes, B.D. and Wishart, D.S. (2001) J. Biomol. NMR, 19, 187-188.

    Google Scholar 

  • Braun, D., Wider, G. and Wüthrich, K. (1994) J. Am. Chem. Soc., 116, 8466-8469.

    Google Scholar 

  • Buckingham, A.D. (1960) Can. J. Chem., 38, 300-307.

    Google Scholar 

  • Case, D.A. (1998) Curr. Opin. Struct. Biol., 8, 624-630.

    Google Scholar 

  • Case, D.A. (2000) Curr. Opin. Struct. Biol., 10, 197-203.

    Google Scholar 

  • Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289-302.

    Google Scholar 

  • Dalgarno, D.C., Levine, B.A. and Williams, R.J.P. (1983) Biosci. Rep., 3, 443-452.

    Google Scholar 

  • de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491-1496.

    Google Scholar 

  • Derewenda, Z.S., Lee, L. and Derewenda, U. (1995) J. Mol. Biol. 252, 248-262.

    Google Scholar 

  • Doreleijers, J.F., Rullmann, J.A. and Kaptein, R. (1998) J. Mol. Biol., 281, 149-164.

    Google Scholar 

  • Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Biochemistry, 36, 1389-1401.

    Google Scholar 

  • Gibas, C.J. and Subramanian, S. (1996) Biophys. J. 71, 130-147.

    Google Scholar 

  • Haigh, C.W. and Mallion, R.B. (1980) Progr. NMR Spectrosc., 13, 303-344.

    Google Scholar 

  • Herranz, J., Gonzalez, C., Rico, M., Nieto, J.L., Santoro, J., Jimenez, M.A., Bruix, M., Neira, J.L. and Blanco, F.J. (1992) Magn. Reson. Chem., 30, 1012-1018.

    Google Scholar 

  • Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199-211.

    Google Scholar 

  • Kabsch, W. and Sander, C. (1983) Biopolymers, 22, 2577-2637.

    Google Scholar 

  • Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M. (1995a) J. Magn. Reson. B., 106, 92-96.

    Google Scholar 

  • Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1995b) J. Magn. Reson., B107, 293-297.

    Google Scholar 

  • Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477-486.

    Google Scholar 

  • Le, H. and Oldfield, E. (1994) J. Biomol. NMR, 4, 341-348.

    Google Scholar 

  • Le, H., Pearson, J.G., de Dios, A.C. and Oldfield, E. (1995). J. Am. Chem. Soc. 117, 3800-3807.

    Google Scholar 

  • Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 1-23.

    Google Scholar 

  • Osapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.

    Google Scholar 

  • Osapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.

    Google Scholar 

  • Osapay, K., Theriault, Y., Wright, P.E. and Case, D.A. (1994) J. Mol. Biol., 244, 183-197.

    Google Scholar 

  • Pearson, J.T., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc. 119, 11941-11950.

    Google Scholar 

  • Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217-236.

    Google Scholar 

  • Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.

    Google Scholar 

  • Wagner, G., Pardi, A. and Wüthrich, K. (1983) J. Am. Chem. Soc., 105, 5948.

    Google Scholar 

  • Williamson, M.P. and Asakura, T. (1997) Meth. Mol. Biol., 60, 53-69.

    Google Scholar 

  • Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 93-98.

    Google Scholar 

  • Williamson, M.P., Kikuchi, J. and Asakura, T. (1995) J. Mol. Biol., 247, 541-546.

    Google Scholar 

  • Wishart, D.S. and Case, D.A. (2001) Meth. Enzymol., 338, 3-34.

    Google Scholar 

  • Wishart, D.S. and Nip, A.M. (1998) Biochem. Cell Biol., 76, 153-163.

    Google Scholar 

  • Wishart, D.S. and Sykes, B.D. (1994) Meth. Enzymol., 239, 363-392.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 67-81.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135-140.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311-333.

    Google Scholar 

  • Wishart, D.S., Willard, L., Richards, F.M. and Sykes, B.D. (1994) VADAR: A comprehensive program for protein structure evaluation. Version 1.2. Edmonton, Alberta, Canada.

  • Word, J.M., Lovell, S.C., Richardson, J.S. and Richardson, D.C. (1999) J. Mol. Biol., 285, 1733-1747.

    Google Scholar 

  • Xu, X-P. and Case, D.A. (2001) J. Biomol. NMR, 21, 321-333.

    Google Scholar 

  • Xu, X-P. and Case, D.A. (2002) Biopolymers, 65, 408-423.

    Google Scholar 

  • Zhang, H., Neal, S. and Wishart, D.S. (2003) J. Biomol. NMR, 25, 173-195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Wishart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, S., Nip, A.M., Zhang, H. et al. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26, 215–240 (2003). https://doi.org/10.1023/A:1023812930288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023812930288

Navigation