Skip to main content
Log in

Influence of Small Amounts of Impurities on Copper Oxidation at 600–1050°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In order to study the influence of small amount of impurities on the copper oxidation kinetics, the oxidation was examined at 600–1050°C in 0.1 MPa oxygen atmosphere using 99.5% (2N) and 99.9999% (6N) pure copper specimens. The influence of impurities has been discussed considering the roles of the nonprotective CuO layer, the impurity layer at the Cu2O–Cu interface, and the diffusion of copper in the Cu2O layer. The nonprotective CuO layer for 2N copper can greatly enhance copper oxidation. However, the impurities concentrated at the region near the Cu2O–Cu interface for 2N copper can slow oxidation. Contrary to the presence of metallic impurities, such as Ni, Sb, and Pb, the nonmetallic elements As and Se dissolved in Cu2O have a deleterious influence on the outward diffusion of copper. Grain-boundary diffusion in Cu2O can somewhat contribute to 2N copper oxidation at 850–1050°C, but its effect in enhancing oxidation at 600–800°C is weaker than the effect of the impurity layer at the Cu2O–Cu interface in impeding oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Zhu, K. Mimura, and M. Isshiki, J. Electrochem. Soc. in press.

  2. Y. Zhu, K. Mimura, Y. Ishikawa, and M. Isshiki, Mater. Trans. JIM 43, 2802(2002).

    Google Scholar 

  3. N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529(1923).

    Google Scholar 

  4. J. A. Sartell and C. H. Li, Trans. Amer. Soc. Metall. 55, 158(1962).

    Google Scholar 

  5. J. C. Blades and A. Preece, J. Inst. Met. 88, 427(1959–60).

    Google Scholar 

  6. L. Czerski, S. Mrowec, and T. Werber, Roczniki Chem. 38, 643(1964).

    Google Scholar 

  7. R. F. Tylecote, J. Inst. Met. 78, 301(1950–51).

    Google Scholar 

  8. R. F. Tylecote, J. Inst. Met. 78, 327(1950–1951).

    Google Scholar 

  9. Y. Zhu, Ph.D. thesis, Tohoku University, Japan, 2002.

  10. S. Mrowec and A. Stoklosa, Oxid. Met. 3, 291(1971).

    Google Scholar 

  11. D. W. Bridges, J. P. Baur, G. S. Baur, and W. M. Fassell, J. Electrochem. Soc. 103, 475(1956).

    Google Scholar 

  12. J. H. Park and K. Natesan, Oxid. Met. 39, 411(1993).

    Google Scholar 

  13. W. McKewan and W. M. Fassell, J. Met. p. 1127(1953).

  14. O. Kubaschewski, Z. Elektrochem. 49, 449(1943).

    Google Scholar 

  15. F. N. Rhines, Trans. Amer. Inst. Min. Met. Eng. 137, 246(1940).

    Google Scholar 

  16. F. N. Rhines, W. A. Johnson, and W. A. Anherson, Trans. Amer. Inst. Min. Met. Eng. 147, 205(1947).

    Google Scholar 

  17. A. Smirnov, Acta Physicochim. URSS 22, 162(1947).

    Google Scholar 

  18. A. Orlov and A. Smirnov, Acta Physicochim. URSS 22, 225(1947).

    Google Scholar 

  19. A. P. C. Hallowes and F. Voce, Metallurgia 34, 95(1946).

    Google Scholar 

  20. O. Kubaschewski, Oxidation of Metals and Alloys (Academic Press, NY, 1962), pp. 130, 251.

    Google Scholar 

  21. C. Wagner and K. E. Zimens, Acta Chem. Scand. 1, 547(1951).

    Google Scholar 

  22. S. K. Roy, S. K. Bose, and S. C. Sircar, Oxid. Met. 35, 1(1991).

    Google Scholar 

  23. S. K. Bose, S. K. Mita, and S. K. Roy, Oxid. Met. 46, 73(1996).

    Google Scholar 

  24. S. Mrowec and A. Stoklosa, Werkst. Korros. 21, 934(1970).

    Google Scholar 

  25. Y. Zhu, K. Mimura, and M. Isshiki, Mater. Trans. JIM 43, 2173(2002).

    Google Scholar 

  26. P. Kofstad, High Temperature Corrosion (Elsevier, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Mimura, K. & Isshiki, M. Influence of Small Amounts of Impurities on Copper Oxidation at 600–1050°C. Oxidation of Metals 59, 575–590 (2003). https://doi.org/10.1023/A:1023679430175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023679430175

Navigation