Skip to main content
Log in

Markov Chain Monte Carlo Approaches to Analysis of Genetic and Environmental Components of Human Developmental Change and G × E Interaction

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The linear structural model has provided the statistical backbone of the analysis of twin and family data for 25 years. A new generation of questions cannot easily be forced into the framework of current approaches to modeling and data analysis because they involve nonlinear processes. Maximizing the likelihood with respect to parameters of such nonlinear models is often cumbersome and does not yield easily to current numerical methods. The application of Markov Chain Monte Carlo (MCMC) methods to modeling the nonlinear effects of genes and environment in MZ and DZ twins is outlined. Nonlinear developmental change and genotype × environment interaction in the presence of genotype-environment correlation are explored in simulated twin data. The MCMC method recovers the simulated parameters and provides estimates of error and latent (missing) trait values. Possible limitations of MCMC methods are discussed. Further studies are necessary explore the value of an approach that could extend the horizons of research in developmental genetic epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besag, J. E. (2000). Markov Chain Monte Carlo for Statistical Inference. Working Paper #9. Center for Statitics and Social Sciences, University of Washington, WA.

    Google Scholar 

  • Besag, J. E., and Green, P. J. (1993). Spatial statistics and Bayesian computation (with Discussion). J. R. Stat. Soc. B 55: 25-37.

    Google Scholar 

  • Brooks, S. P. (1998). Markov Chain Monte Carlo and its applications. Statistician 47: 69-100.

    Google Scholar 

  • Burton, P. R., Tiller, K. J., Gurrin, L. C., Cookson, W. O. C. M., Musk, A. W., and Palmer, L. J. (1999). Genetic variance components analysis of binary phenotypes using generalized linear mixed models and Gibbs sampling. Genet. Epidemiol. 17: 118-140.

    Google Scholar 

  • Clayton, D. G. (1999). Linear mixed models. In W. R. Gilks, S. Richardson, and D. Spielgelhalter (eds.), Markov Chain Monte Carlo in practice. London: Chapman and Hall.

    Google Scholar 

  • Creutz, M. (1979). Confinement and the critical dimensionality of space-time. Physics Rev. Lett. 43: 553-556.

    Google Scholar 

  • Do, K. A., Broom, B. M., Kuhnert, P., Duffy, D. L., Todorov, A. A., Treloar, S. A., and Martin, N. G. (2000). Genetic analysis of the age at menopause by using estimating equations and Bayesian random effects models. Stat. Med. 19: 1217-1235.

    Google Scholar 

  • Eaves, L. J., Last, K. A., Young, P. A., and Martin, N. G. (1978). Model-fitting approaches to the analysis of human behavior. Heredity 41: 249-320.

    Google Scholar 

  • Eaves, L. J., Martin, N. G., Heath, A. C., and Kendler, K. S. (1987) Testing genetic models for multiple symptoms: An application to the genetic analysis of liability to depression. Beh. Genet. 17: 331-341.

    Google Scholar 

  • Fulker, D. W. (1973). A biometrical genetic approach to intelligence and schizophrenia. Soc. Biol. 20: 266-275.

    Google Scholar 

  • Gelfand, A. E., and Smith, A. M. F. (1990). Sampling based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85: 398-409.

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian data analysis. New York: Chapman and Hall.

    Google Scholar 

  • Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Inst. Electrical Electronics Eng. Trans. Pattern Analysis Machine Intelligence 6: 721-741.

    Google Scholar 

  • Gilks, W. R., Richardson, S., and Spielgelhalter, D. (1996). Markov Chain Monte Carlo in practice. London: Chapman and Hall.

    Google Scholar 

  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97-109.

    Google Scholar 

  • Jinks, J. L., and Fulker, D. W. (1970). Comparison of the biometrical genetical, MAVA and classical approaches to the analysis of human behavior. Psychol. Bull. 73: 311-349.

    Google Scholar 

  • Lindstrom, M. J., and Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics 46: 673-687.

    Google Scholar 

  • Martin, N. G., and Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity 38: 79-95.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equations of state calculations by fast computing machines. J. Chem. Physics 21: 1087-1091.

    Google Scholar 

  • Meyer, J. M., and Eaves, L. J. (1988). Estimating genetic parameters of survival distributions. Genet. Epidemiol. 5: 265-275.

    Google Scholar 

  • Meyer, J. M., Eaves, L. J., Heath, A. C., and Martin, N. G. (1991). Estimating genetic influences on age at menarche: a survival analysis approach. Am. J. Med. Genet. 39: 148-154.

    Google Scholar 

  • Molenaar, P. C. M., Boomsmas, D. I., Neeleman, D., and Dolan, C. V. (1990). Using factor scores to detect G × E interactive origin of ‘pure’ genetic or environmental factors obtained in genetic covariance structure analysis. Genet. Epidemiol. 7: 83-100.

    Google Scholar 

  • Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (1999). Mx: Statistical modeling. 5th ed. Department of Psychiatry. Box 126 VCU, Richmond, VA 23298.

    Google Scholar 

  • Neale, M. C., and Kendler, K. S. (1995). Models of comorbidity for multifactorial disorders. Am. J. Hum. Genet. 57: 935-953.

    Google Scholar 

  • Ripley, B. D. (1979). Algorithm AS 137: Simulating spatial patterns: Dependent samples from a multivariate density. Appl. Statist. 28: 109-112.

    Google Scholar 

  • Shoemaker, J. S., Painter, I. S., and Weir, B. S. (1999). Bayesian statistics in genetics—a guide for the uninitiated. Trends Genet. 15: 354-358.

    Google Scholar 

  • Sivia, D. S. (1996). Data analysis: a bayesian tutorial. Oxford: Oxford University Press.

    Google Scholar 

  • Spielgelhalter, D. J., Thomas, A., and Best, N. G. (1999). WinBugs version 1.2 User Manual. Cambridge: MRC Biostatistics Unit.

    Google Scholar 

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B 64: 1-34.

    Google Scholar 

  • Thomas and Gauderman (1996). Gibbs sampling methods in genetics. W. R. Gilks, S. Richardson, and D. Spielgelhalter (eds.), In Markov Chain Monte Carlo in Practice. London: Chapman and Hall.

    Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions (with Discussion). Ann. Stat. 22: 1701-1762.

    Google Scholar 

  • Zeger, S. L., and Karim, M. R. (1991). Generalized linear models with random effects: A Gibbs sampling approach. J. Am. Stat. Assoc. 86: 79-86.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaves, L., Erkanli, A. Markov Chain Monte Carlo Approaches to Analysis of Genetic and Environmental Components of Human Developmental Change and G × E Interaction. Behav Genet 33, 279–299 (2003). https://doi.org/10.1023/A:1023446524917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023446524917

Navigation