Skip to main content
Log in

Scaling of Fracture and Faulting of Ice on Earth

Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The scaling properties of fracture and faulting of ice on Earth are reviewed.Numerous evidences for the scaling of fracture and faulting of ice are given,including self-affine fracture surfaces, fractal fracture networks at small(laboratory) and large (geophysical) scales, power law distributions of fracturelengths or of fragment sizes within fault gouges. These scaling laws are discussedin terms of the underlying mechanics. Scaling of the observables associated withfracture and faulting argues for the scale invariance of the fracture and faultingprocesses and indicates that small scales cannot be arbitrarily disconnected fromlarge scales. Consequently, quantitative links between scales cannot be performedthrough classical homogenization procedures. Scaling can also induce scale effectson different mechanical parameters such as fracture energy, strength or stiffness.Although scaling is ubiquitous for the fracture of ice on Earth, important exceptionsexist such as the nucleation of microcracks or the crevassing of glaciers. Theseexceptions are stressed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, P. M. and Thovert, J. F.: 1999, Fractures and Fracture Networks, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Allègre, C. J., Le Mouel, J. L., and Provost, A.: 1982, Scaling rules in rock fracture and possible implications for earthquake prediction, Nature 297, 47–49.

    Google Scholar 

  • Ashby, M. F. and Hallam, S. D.: 1986, The failure of brittle solids containing small cracks under compressive stress states, Acta. Metall. 34(3), 497–510.

    Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K.: 1988, Self-organized criticality, Physical Review A 38, 364–374.

    Google Scholar 

  • Barton, C. C. and Larsen, E.: 1985, Fractal geometry of 2-dimensional fracture networks at Yucca Mountain, southwestern Nevada, in O. Stephanson (ed.), International Symposium on Fundamentals of Rock Joints, Bjorkliden, pp. 77–84.

  • Bazant, Z. P. and Planas, J.: 1998, Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton.

    Google Scholar 

  • Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B.: 2001, Scaling of fracture systems in geological media, Reviews of Geophysics 39(3), 347–383.

    Google Scholar 

  • Bouchaud, E: 1999, Scaling properties of cracks, J. Phys. Condens. Matter 9, 4319–4344.

    Google Scholar 

  • Bour, O. and Davy, P. 1999, Clustering and size distributions of fault patterns: Theory and measurements, Geophys. Res. Lett. 26(13), 2001–2004.

    Google Scholar 

  • Bowman, D. D., Ouillon, G., Sammis, C. G., Sornette, A., and Sornette, D.: 1998, An observational test of the critical earthquake concept, J. Geophys. Res. 103(B10), 24359–24372.

    Google Scholar 

  • Bui, H. D.: 1978, Mécanique de la Rupture Fragile, Masson, Paris.

    Google Scholar 

  • Cammaert, A. B. and Crocker, G. B.: 1991, Fractal characteristics of ice, in 11th Int. Conf. on Port and Ocean Engineering under Arctic Conditions, POAC 91, St John's, Canada, pp. 401–415.

    Google Scholar 

  • Cowie, P. A. and Scholz, C. H.: 1992a, Displacement-length scaling relationship for faults: Data synthesis and discussion, J. Struc. Geology 14(10), 1149–1156.

    Google Scholar 

  • Cowie, P. A. and Scholz, C. H.: 1992b, Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model, J. Struc. Geology 14(10), 1133–1148.

    Google Scholar 

  • Cowie, P. A., Sornette, D., and Vanneste, C.: 1995, Multifractal scaling properties of a growing fault population, Geophys. J. Int. 122, 457–469.

    Google Scholar 

  • Davy, P., Sornette, A., and Sornette, D.: 1990, Some consequences of a proposed fractal nature of continental faulting, Nature 348, 56–58.

    Google Scholar 

  • Dempsey, J. P., DeFranco, S. J., Adamson, R. M., and Mulmule, S. V.: 1999, Scale effects on the in-situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta, Int. J. Fracture 95, 325–345.

    Google Scholar 

  • Dempsey, J. P. and Palmer, A. C.: 1999, Non-universal scaling of arctic fractures, in J. Tuhkuri and K. Riska (eds) POAC, pp. 11–24, Helsinki University of Technology, Epsoo, Finland, pp. 11–24.

    Google Scholar 

  • Dudko, Y. V., Schmidt, H., von der Heydt, K., and Scheer, E. K.: 1998, Edge wave observation using remote seismoacoustic sensing of ice events in the Arctic, J. Geophys. Res. 103(C10), 21775–21781.

    Google Scholar 

  • Erlingsson, B.: 1988, Two-dimensional deformation patterns in sea ice, J. Glaciol. 34, 301–308.

    Google Scholar 

  • Falco, T., Francis, F., Lovejoy, S., Schertzer, D., Kerman, B., and Drinkwater, M.: 1996, Universal multifractal scaling of synthetic aperture radar images of sea-ice, IEEE Transactions on Geoscience and Remote Sensing 34(4), 906–914.

    Google Scholar 

  • Feder, J.: 1988, Fractals, Plenum Press, New York.

    Google Scholar 

  • Fily, M. and Rothrock, D. A.: 1990, Opening and closing of sea ice leads: Digital measurements from synthetic aperture radar, J. Geophys. Res. 95(C1), 789–796.

    Google Scholar 

  • Frost, H. J.: 2001, Mechanisms of crack nucleation in ice, Engineering Fracture Mechanics 68(17–18), 1823–1837.

    Google Scholar 

  • Garvin, J. B. and Williams, R. S.: 1993, Geodetic airborne laser altimetry of Breidamerkurjokull and Skeidararjokull, Iceland, and Jakobshavns Isbrae, West Greenland, Annals of Glaciology 17, 379–385.

    Google Scholar 

  • Guarino, A., Garcimartin, A., and Ciliberto, S.: 1998, An experimental test of the critical behaviour of fracture precursors, Eur. Phys. J. B. 6 13–24.

    Google Scholar 

  • Gutenberg, B. and Richter, C. F.: 1954, Seismicity of the Earth and Associated Phenomenon, Princeton University Press, Princeton.

    Google Scholar 

  • Hambrey, M. J. and Muller, F.: 1978, Structures and ice deformation in the white glacier, Axel Heiberg Island, Northwest Territories, Canada, J. Glaciol. 20(8), 41–66.

    Google Scholar 

  • Hanson, B. and Hooke, R. L.: 2000, Glacier calving: a numerical model of forces in the calvingspeed/ water-depth relation, J. Glaciol. 46(153), 188–196.

    Google Scholar 

  • Harrison, W. D., Echelmeyer, K. A., and Engelhardt, H.: 1993, Short-period observations of speed, strain and seismicity on Ice Stream B, Antarctica, J. Glaciol. 39(133), 463–470.

    Google Scholar 

  • Hartmann, W. K.: 1994, Terrestrial, Lunar, and Interplanetary rock fragmentation, Icarus 10, 201–213.

    Google Scholar 

  • Hatton, C. G., Main, I. G., and Meredith, P. G.: 1994, Non-universal scaling of fracture length and opening displacement, Nature 367, 160–162.

    Google Scholar 

  • Hentschel, H. G. E. and Procaccia, I.: 1983, The infinite number of generalized dimensions of fractals and strange attractors, Physica D 8, 435–444.

    Google Scholar 

  • Herrmann, H. J. and Roux, S.: 1990, Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam.

    Google Scholar 

  • Hirata, T., Satoh, T., and Ito, K.: 1987, Fractal structure of spatial distribution of microfracturing in rock, Geophys. J. R. Astron. Soc. 90, 369–374.

    Google Scholar 

  • Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Scharg, D. P.: 1998, A neoproterozoic snowball Earth, Science 281, 1342–1346.

    Google Scholar 

  • Jordaan, I. J., Stone, B. M., and McKenna, R. F.: 1992, Effect of microcracking on the deformation of ice, Can. Geotech. J. 29, 143–150.

    Google Scholar 

  • Kachanov, M.: 1994, Elastic solids with many cracks and related problems, Advances in Applied Mechanics 30, 259–445.

    Google Scholar 

  • Kagan, Y. Y.: 1991, Fractal dimension of brittle fracture, J. Nonlinear Sci. 1, 1–16.

    Google Scholar 

  • Kagan, Y. Y. and Knopoff, L.: 1980, Spatial distribution of earthquakes: The two point correlation function, Geophys. J. R. Astron. Soc. 62, 303–320.

    Google Scholar 

  • Kanamori, H.: 1978, Quantification of earthquakes, Nature 271, 411–414.

    Google Scholar 

  • Kergomard, C.: 1989, Analyse morphométrique de la zone marginale de la banquise polaire au nordouest du spitsberg à partir de l'imagerie SPOT panchromatique, Bull. S.F.P.T. 115, 17–20.

    Google Scholar 

  • Korvin, G.: 1992, Fractal Models in the Earth Sciences, Elsevier, Amsterdam.

    Google Scholar 

  • Kranz, R. L.: 1983, Microcracks in rocks: A review, Tectonophysics 100, 449–480.

    Google Scholar 

  • Kusunose, K., Lei, X., Nishizawa, O., and Satoh, T.: 1991, Effect of grain size on fractal structure of acoustic emission hypocenter distribution in granitic rock, Physics of the Earth and Planetary Interiors 67, 194–199.

    Google Scholar 

  • Lahaie, F. and Grasso, J. R.: 1999, Loading rate impact on fracturing pattern: Lessons from hydrocarbon recovery, Lacq gas field, France, J. Geophys. Res. 104(B8), 17941–17954.

    Google Scholar 

  • Lee, R. W. and Schulson, E. M.: 1988, The strength and ductility of ice under tension, J. Offshore Mech. Arctic Eng. 110, 187–191.

    Google Scholar 

  • Lei, X., Nishizawa, O., and Kusunose, K.: 1993, Band-limited heterogeneous fractal structure of earthquakes and acoustic-emission events, Geophys. J. Int. 115, 79–84.

    Google Scholar 

  • Lemaitre, J. and Chaboche, J. L.: 1988, Mécanique des Matériaux Solides, Dunod, Paris.

    Google Scholar 

  • Lensu, M.: 1990, The fractality of sea ice cover, in IAHR Ice Symposium, Espoo, Finland, pp. 300–313.

    Google Scholar 

  • Leonard, T., Papasouliotis, O., and Main, I. G.: 2001, A Poisson model for identifying characteristic size effects in frequency data: Application to frequency-size distributions for global earthquakes, “starquakes”, and fault lengths, J. Geophys. Res. 106(B7), 13473–13484.

    Google Scholar 

  • Lesne, A.: 1996, Méthodes de Renormalisation, Eyrolles Sciences, Paris.

    Google Scholar 

  • Lewis, J. K.: 1998, Thermomechanics of pack ice, J. Geophys. Res. 103(C10), 21869–21882.

    Google Scholar 

  • Lewis, J. K. and Richter-Menge, J. A.: 1998, Motion-induced stresses in pack ice, J. Geophys. Res. 103(C10), 21831–21843.

    Google Scholar 

  • Lindsay, R. W. and Rothrock, D. A.: 1995, Arctic sea ice leads from advanced very high resolution radiometer images, J. Geophys. Res. 100(C3), 4533–4544.

    Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., and Sidorin, A.: 1991, Quasi-static fault growth and shear fracture energy in granite, Nature 350, 39–42.

    Google Scholar 

  • Main, I.: 1996, Statistical physics, seismogenesis, and seismic hazard, Reviews of Geophysics 34(4), 433–462.

    Google Scholar 

  • Malthe-Sorensen, A. and Walmann, T.: 1999, Simulation and characterization of fracture patterns in glaciers, J. Geophys. Res. 104(B10), 23157–23174.

    Google Scholar 

  • Mandelbrot, B. B.: 1982, The Fractal Geometry of Nature, W. H. Freeman, New York.

    Google Scholar 

  • Marone, C. and Scholz, C. H.: 1989, Particle-size distribution and microstructures within simulated fault gouge, J. Struc. Geol. 11, 799–814.

    Google Scholar 

  • Marsan, D., Bean, C. J., Steacy, S., and McCloskey, J.: 2000, Observation of diffusion processes in earthquake populations, and implications for the predictability of seismicity systems, J. Geophys. Res. 105(B12), 28081–28094.

    Google Scholar 

  • Matsushita, M.: 1985, Fractal viewpoint of fracture and accretion, J. Phys. Soc. Japan 54(3), 857–860.

    Google Scholar 

  • Miannay, D.: 1998, Fracture Mechanics, Springer, Berlin.

    Google Scholar 

  • Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J., and Grasso, J. R.: 2001, Intermittent dislocation flow in viscoplastic deformation, Nature 410, 667–671.

    Google Scholar 

  • Morgan, J. K.: 1999, Numerical simulations of granular shear zones using the distinct element method. 2. Effects of particle size distribution and interparticle friction on mechanical behavior, J. Geophys. Res. 104(B2), 2721–2732.

    Google Scholar 

  • Morison, J., Aagaard, K., and Steele, M.: 2000, Recent environmental changes in the Arctic: A review, Arctic 53(4), 359–371.

    Google Scholar 

  • Neave, K. G. and Savage, J. C.: 1970, Icequakes on the Athabasca glacier, J. Geophys. Res. 75(8), 1351–1362.

    Google Scholar 

  • Nye, J. F.: 1957, The distribution of stress and velocity in glaciers and ice-sheets, Proc. R. Soc. London A 239, 113–133.

    Google Scholar 

  • Odling, N. E.: 1997, Scaling and connectivity of joints systems in sandstones from western Norway, J. Struc. Geol. 19(10), 1257–1271.

    Google Scholar 

  • Oerlemans, J. and van der Veen, C. J.: 1984, Ice Sheets and Climate, D. Reidel Publishing Company, Dordrecht, The Netherlands.

    Google Scholar 

  • Otsuki, K.: 1998, An empirical evolution law of fractal size frequency of fault population and its similarity law, Geophys. Res. Lett. 25(5), 671–674.

    Google Scholar 

  • Ouillon, G., Castaing, C., and Sornette, D.: 1996, Hierarchical geometry of faulting, J. Geophys. Res. 101(B3), 5477–5487.

    Google Scholar 

  • Overland, J. E., Walter, B. A., Curtin, T. B., and Turet, P.: 1995, Hierarchy and sea ice mechanics: A case study from the Beaufort Sea, J. Geophys. Res. 100(C3), 4559–4571.

    Google Scholar 

  • Parsons, B. L.: 1991, A renormalized group model for the fragmentation of ice, Cold Reg. Sci. Tech. 20, 99–101.

    Google Scholar 

  • Parsons, B. L.: 1993, The Application of Fractal/Chaos Concepts to Ice Mechanics-A Review, Institute for Marine Dynamics, NRC Canada.

    Google Scholar 

  • Paterson, W. S. B.: 1994, The Physics of Glaciers, Pergamon, Oxford.

    Google Scholar 

  • Petri, A., Paparo, G., Vespignani, A., Alippi, A., and Costantini, M.: 1994, Experimental evidence for critical dynamics in microfracturing processes, Phys. Rev. Lett. 73(25), 3423–3426.

    Google Scholar 

  • Pickering, G., Bull, J. M., and Sanderson, D. J.: 1995, Sampling power-law distributions, Tectonophysics 248, 1–20.

    Google Scholar 

  • Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., and Scholz, C. H.: 1987, Roughness of natural fault surfaces, Geophys. Res. Lett. 14(1), 29–32.

    Google Scholar 

  • Renshaw, C. E. and Park, J. C.: 1997, Effect of mechanical interactions on the scaling of fracture length and aperture, Nature 386, 482–484.

    Google Scholar 

  • Richter-Menge, J. A. and Elder, B. C.: 1998, Characteristics of pack ice stress in the Alaskan Beaufort Sea, J. Geophys. Res. 103(C10), 21817–21829.

    Google Scholar 

  • Rist, M. A., Sammonds, P. R., Murrell, S. A. F., Meredith, P. G., Doake, C. S. M., Oerter, H., and Matsuki, K.: 1999, Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing, J. Geophys. Res. 104, 2973–2987.

    Google Scholar 

  • Rothrock, D. A. and Thorndike, A. S.: 1984, Measuring the sea ice floe size distribution, J. Geophys. Res. 89(C4), 6477–6486.

    Google Scholar 

  • Russ, J. C.: 1994, Fractal Surfaces, Plenum Press, New York.

    Google Scholar 

  • Sammis, C., King, G., and Biegel, R.: 1987, The kinematics of gouge deformation, PAGEOPH 125(5), 777–812.

    Google Scholar 

  • Sassolas, C., Pfeffer, T., and Amadei, B.: 1996, Stress interaction between multiple crevasses in glacier ice, Cold Reg. Sci. Tech. 24, 107–116.

    Google Scholar 

  • Schafer, L.: 1998, Field theory of critical phenomena: quantitative analysis beyond power laws, Physics Reports 301, 205–234.

    Google Scholar 

  • Schmittbuhl, J., Gentier, S., and Roux, S.: 1993, Field measurements of the roughness of fault surfaces, Geophys. Res. Lett. 20(8), 639–641.

    Google Scholar 

  • Schmittbuhl, J., Schmitt, F., and Scholz, C.: 1995, Scaling invariance of crack surfaces, J. Geophys. Res. 100, 5953–5973.

    Google Scholar 

  • Scholz, C. H.: 1968, The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, Bull. Seism. Soc. Am. 58(1), 399–415.

    Google Scholar 

  • Scholz, C. H.: 1990, The Mechanics of Earthquakes and Faulting, Cambridge University Press, Cambridge.

    Google Scholar 

  • Scholz, C. H. and Cowie, P. A.: 1990, Determination of total strain from faulting using slip measurements, Nature 346, 837–839.

    Google Scholar 

  • Schulson, E. M.: 1997, The brittle failure of ice under compression, J. Phys. Chem. B 101, 6254–6258.

    Google Scholar 

  • Schulson, E. M.: 2001, Brittle failure of ice, Engineering Fracture Mechanics 68(17–18), 1839–1887.

    Google Scholar 

  • Schulson, E. M. and Hibler, W. D.: 1991, The fracture of ice on scales large and small: Arctic leads and wing cracks, J. Glaciol. 37, 319–322.

    Google Scholar 

  • Sornette, D., Davy, P., and Sornette, A.: 1990, Structuration of the lithosphere in plate tectonics as a self-organized critical phenomenon, J. Geophys. Res. 95(B11), 17353–17361.

    Google Scholar 

  • Stanley, H. E.: 1999, Scaling, universality, and renormalization: The three pillars of modern critical phenomena, Reviews of modern physics 71(2), S358-S366.

    Google Scholar 

  • Steacy, S. J. and Sammis, C. G.: 1991, An automaton for fractal patterns of fragmentation, Nature 353, 250–252.

    Google Scholar 

  • Stern, H. L. and Moritz, R. E.: 2001, Sea ice kinematics and surface properties from RADARSAT SAR during the SHEBA drift, J. Geophys. Res., in press.

  • Straumsnes, S., Dommersnes, P., Flekkoy, E. G., and S. Roux, S.: 1997, Damage due to self-similar micro-cracking, Eur. J. Mech. A/Solids 16(6), 993–1009.

    Google Scholar 

  • Timco, G.W. and Jordaan, I. J.: 1987, Time series variations in ice crushing, in 9th Int. Conf. on Port and Ocean Engineering under Arctic Conditions, POAC 87, pp. 13–20.

  • Tuhkuri, J.: 1994, Analysis of ice fragmentation process from measured particle size distributions of crushed ice, Cold Reg. Sci. Tech. 23, 69–82.

    Google Scholar 

  • Turcotte, D. L.: 1986, Fractals and fragmentation, J. Geophys. Res. 91(B2), 1921–1926.

    Google Scholar 

  • Turcotte, D. L.: 1992, Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.

    Google Scholar 

  • Velde, B., Moore, D., Badri, A., and Ledesert, B.: 1993, Fractal and length analysis of fractures during brittle to ductile changes, J. Geophys. Res. 98, 11935–11940.

    Google Scholar 

  • Volant, P. and Grasso, J. R.: 1994, The finite extension of fractal geometry and power law distribution of shallow earthquakes: A geomechanical effect, J. Geophys. Res. 99(B11), 21879–21889.

    Google Scholar 

  • Walsh, J., Watterson, J., and Yielding, G.: 1991, The importance of small-scale faulting in regional extension, Nature 351, 391–393.

    Google Scholar 

  • Walsh, J. B.: 1965, The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res. 70(2), 399–411.

    Google Scholar 

  • Wei, Y. and Dempsey, J. P.: 1991, Fractographic examinations of fracture in polycrystalline S2 ice, J. of Material Science 26, 5733–5740.

    Google Scholar 

  • Weibull, W.: 1939, A statistical theory of the strength of materials, Proc. Royal Swedish Academy of Eng. Sci. 151, 1–45.

    Google Scholar 

  • Weiss, J: 1999, The ductile behavior of damaged ice under compression, in J. T. a. K. Riska (ed.), 15th International Conference on Port and Ocean Engineering under Arctic Conditions, Epsoo, Finland, pp. 70–80.

    Google Scholar 

  • Weiss, J.: 2000, Scale invariance of fracture surfaces in ice, in IUTAM symposium on Scaling Laws in Ice Mechanics, in J. Dempsey and H. H. Shen (eds.), Kluwer Academic Publishers, Fairbanks, AK, USA, pp. 217–226.

    Google Scholar 

  • Weiss, J.: 2001, Self-affinity of fracture surfaces and implications on a possible size effect on fracture energy, Int. J. Fracture 109, 365–381.

    Google Scholar 

  • Weiss, J.: 2003, Scale effect on strength induced by scale invariant patterns, in preparation.

  • Weiss, J. and Gay, M.: 1998, Fracturing of ice under compression creep as revealed by a multifractal analysis, J. Geophys. Res. 103(B10), 24005–24016.

    Google Scholar 

  • Weiss, J., Grasso, J. R., and Martin, P.: 1998, AE and scaling laws in micro-structurally controlled ice samples, in H. R. Hardy (ed.), AE/MS in Geological Structures and Materials, Series on Rock and Soil Mechanics, Trans Tech Publications, Clausthal-Zellerfeld, Germany, pp. 583–595.

    Google Scholar 

  • Weiss, J., Lahaie, F., and Grasso, J. R.: 2000, Statistical analysis of dislocation dynamics during viscoplastic deformation from acoustic emission, J. Geophys. Res. 105(B1), 433–442.

    Google Scholar 

  • Weiss, J. and Schulson, E. M.: 1995, The failure of fresh-water granular ice under multiaxial compressive loading, Acta Metall. Mater 43(6), 2303–2315.

    Google Scholar 

  • Zhang, J., Rothrock, D., and Steele, M.: 2000, Recent changes in arctic sea ice: the interplay between ice dynamics and thermodynamics, Journal of Climate 13(17), 3099–3114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, J. Scaling of Fracture and Faulting of Ice on Earth. Surveys in Geophysics 24, 185–227 (2003). https://doi.org/10.1023/A:1023293117309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023293117309

Navigation