Skip to main content
Log in

Linking Chemical Reactivity and Protein Precipitation to Structural Characteristics of Foliar Tannins

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Tannins influence ecosystem function by affecting decomposition rates, nutrient cycling, and herbivory. To determine the role of tannins in ecological processes, it is important to quantify their abundance and understand how structural properties affect reactivity. In this study, purified tannins from the foliage of nine species growing in the pygmy forest of the northern California coast were examined for chemical reactivity, protein precipitation capacity (PPC), and structural characteristics (13C NMR). Reactivity of purified tannins varied among species 1.5-fold for the Folin total phenol assay, and 7-fold and 3-fold, respectively, for the acid butanol and vanillin condensed tannin assays. There was about a 5-fold difference in PPC. Variation in chemical reactivity and PPC can be largely explained by differences in structural characteristics of the tannins determined by 13C NMR. In particular, the condensed versus hydrolyzable tannin content, as well as the hydroxylation pattern of the B-ring and stereochemistry at the C-2–C-3 position appear to influence reactivity. Due to the large differences in chemical reactivity among species, it is necessary to use a well-characterized purified tannin from the species of interest to convert assay values to concentrations. Our results suggest that structural characteristics of tannins play an important role in regulating their reactivity in ecological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, R. J., Barry, T. N., and McNabb, W. C. 1999. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agric. Ecosyst. Environ 75:1–12.

    Google Scholar 

  • Appel, H. M., Govenor, H. L., D'ascenzo, M., Siska, E., and Schultz, J. C. 2001. Limitations of Folin assays of foliar phenolics in ecological studies. J. Chem. Ecol. 27:761–778.

    Google Scholar 

  • Ayres, M. P., Clausen, T. P., MacLean, S. F., Redman, A. M., and Reichardt, P. B. 1997. Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712.

    Google Scholar 

  • Bate-Smith, E. C. 1977. Astringent tannins of Acer species. Phytochemistry 16:1421–1426.

    Google Scholar 

  • Bernays, E. A., Driver, G. C., and Bilgener, M. 1989. Herbivores and plant tannins. Adv. Ecol. Res. 19:263–302.

    Google Scholar 

  • Bradley, R. L., Titus, B. D., and Preston, C. P. 2000. Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2 SO4 and condensed tannins extracted from Kalmia angustifolia and balsam fir. Soil Biol. Biochem. 32:1227–1240.

    Google Scholar 

  • Clausen, T. P., Provenza, F. D., Burritt, E. A., Reichard, P. B., and Bryant, J. P. 1990. Ecological implications of condensed tannin structure: a case study. J. Chem. Ecol. 16:2381–2392.

    Google Scholar 

  • Czochanska, Z., Foo, L. Y., Newman, R. H., and Porter, L. J. 1980. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. I. 1980:2278–2286.

    Google Scholar 

  • Dawra, R. K., Makkar, H. P. S., and Singh, B. 1988. Protein-binding capacity of microquantities of tannins. Anal. Biochem. 170:50–53.

    Google Scholar 

  • De Bruyne, T., Pieters, L. A. C., Dommisse, R. A., Kolodziej, H., Wray, V., Domke, T., and Vlietinck, A. J. 1996. Unambiguous assignments for free dimeric proanthocyanidin phenols from 2D NMR. Phytochemistry 43:265–272.

    Google Scholar 

  • Ellis, C. J., Foo, L. Y., and Porter, L. J. 1983. Enatiomerism: a characteristic of the proanthocyanidin chemistry of the Monocotoledonae. Phytochemistry 22:483–487.

    Google Scholar 

  • Foo, L. Y. and Porter, L. J. 1980. The phytochemistry of proanthocyanidin polymers. Phytochemistry 19:1747–1754.

    Google Scholar 

  • Foo, L. Y., Newman, R., Waghorn, G., McNabb, W. C., and Ulyatt, M. J. 1996. Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–624.

    Google Scholar 

  • Foo, L. Y., Lu, Y., McNabb, W. C., Waghorn, G., and Ulyatt, M. J. 1997. Proanthocyanidins from Lotus pedunculatus. Phytochemistry 45:1689–1696.

    Google Scholar 

  • Foo, L. Y., Lu, Y., Molan, A. L., Woodfield, D. R., and McNabb, W. C. 2000. The phenols and prodelphinidins of white clover flowers. Phytochemistry 54:539–548.

    Google Scholar 

  • Fukumoto, L. R. and Mazza, G. 2000. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48:3597–3604.

    Google Scholar 

  • Ginger-Chaves, B. I., Van Soest, P. J., Robertson, J. B., Lascano, C., and Pell, A. N. 1997. Comparison of the precipitation of alfalfa leaf protein and bovine serum albumin by tannins in the radial diffusion method. J. Sci. Food Agric. 74:513–523.

    Google Scholar 

  • Hagerman, A. E. 1987. Radial diffusion method for determining tannin in plant extracts. J. Chem. Ecol. 13:437–449.

    Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1978. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 26:809–812.

    Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1981. The specificity of proanthocyanidin–protein interactions. J. Biol. Chem. 256:4494–4497.

    Google Scholar 

  • Hagerman, A. E. and Butler, L. G. 1989. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 15:1795–1810.

    Google Scholar 

  • Hagerman, A. E., Rice, M. E., and Ritchard, N. T. 1998. Mechanisms of protein precipitation for two tannins, pentagalloyl glucose and epicatechin16 (4 → 8) catechin (procyanidin). J. Agric. Food Chem. 46:2590–2595.

    Google Scholar 

  • Handley, W. R. C. 1961. Further evidence for the importance of residual leaf protein complexes in litter decomposition and the supply of nitrogen for plant growth. Plant Soil 15:37–73.

    Google Scholar 

  • Haslam, E. 1988. Plant polyphenols (syn. vegetable tannins) and chemical defense—a reappraisal. J. Chem. Ecol. 14:1789–1806.

    Google Scholar 

  • Hatano, T. and Hemingway, R. W. 1997. Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water. J. Chem. Soc. Perkin Trans. 2 1997:1035–1043.

    Google Scholar 

  • Hättenschwiler, S., and Vitousek, P. M. 2000. The role of polyphenols in terrestrial ecosystem nutrient cycling. Tree 15:238–243.

    Google Scholar 

  • Hedqvist, H., Mueller-Harvey, I., Reed, J. D., Krueger, C. G., and Murphy, M. 2000. Characterisation of tannins and in vitro protein digestibility of several Lotus corniculatus varieties. Anim. Feed Sci. Technol. 87:41–56.

    Google Scholar 

  • Hemingway, R. W. 1989. Structural variations in proanthocyanidins and their derivatives, pp. 83–107, in R. W. Hemingway and J. J. Karchesy (Eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.

    Google Scholar 

  • Hemingway, R. W. and McGraw, G. W. 1983. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. Technol. 3:421–435.

    Google Scholar 

  • Jones, R. J., Meyer, J. H. F., Bechaz, M., and Stoltz, M. A. 2000. An approach to screening potential pasture species for condensed tannin activity. Anim. Feed Sci. Technol. 85:269–277.

    Google Scholar 

  • Kawamoto, H., Nakatsubo, R., and Murakami, K. 1990. Relationship between the B-ring hydroxylation pattern of condensed tannins and their protein-precipitating capacity. J. Wood Chem. Technol. 10:401–409.

    Google Scholar 

  • Lorenz, K. and Preston, C. M. 2002. Characterization of high-tannin fractions from humus by 13C CPMAS NMR. J. Environ. Qual. 31:431–436.

    Google Scholar 

  • Lorenz, K., Preston, C. M., Raspe, S., Morrison, I. K., and Feger, K. H. 2000. Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and 13C CPMAS NMR. Soil Biol. Biochem. 32:779–792.

    Google Scholar 

  • Makkar, H. P. S., Blümmel, M., Borowy, N. K., and Becker, K. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61:161–165.

    Google Scholar 

  • Martin, J. S. and Martin, M. M. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205–211.

    Google Scholar 

  • Mole, S. and Waterman, P. G. 1987a. A critical analysis of techniques for measuring tannins in ecological studies I. Techniques for chemically defining tannins. Oecologia 72:137–147.

    Google Scholar 

  • Mole, S. and Waterman, P. G. 1987b. A critical analysis of techniques for measuring tannins in ecological studies. II. Techniques for biochemically defining tannins. Oecologia 72:148–156.

    Google Scholar 

  • Mole, S., Butler, L. G., Hagerman, A. E., and Waterman, P. G. 1989. Ecological tannin assays: A critique. Oecologia 78:93–96.

    Google Scholar 

  • Morton, J. F. 1978. Economic botany in epidemiology. Econ Bot. 32:111–116.

    Google Scholar 

  • Morton, J. F. 1992. Widespread tannin intake via stimulants and masticatoires, especially guarana, kola nut, betel vine, and accessories, pp. 739–765, in R. W. Hemingway and P. E. Laks (Eds.). Plant Polyphenols. Plenum Press, New York.

    Google Scholar 

  • Nelson, K. E., Pell, A. N., Doane, P. H., Ginger-Chavez, B. I., and Schofield, P. 1997. Chemical and biological assays to evaluate bacterial inhibition by tannins. J. Chem. Ecol. 23:1175–1194.

    Google Scholar 

  • Newman, R. H., Porter, L. J., Foo, L. Y., Johns, S. R., and Willing, R. I. 1987. High-resolution 13C NMR studies of proanthocyanidin polymers (condensed tannins). Magn. Reson. Chem. 25:118–124.

    Google Scholar 

  • Noferi, M., Masson, E., Merlin, A., Pizzi, A., and Deglise, X. 1997. Antioxidant characteristics of hydrolysable and polyflavonoid tannins: an ESR kinetics study. J. Appl. Polymer Sci. 63:475–482.

    Google Scholar 

  • Northup, R. R., Dahlgren, R. A., and Yu, Z. 1995. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil 171:255–262.

    Google Scholar 

  • Northup, R. R., Dahlgren, R. A., and McColl, J. G. 1998. Polyphenols as regulators of plant-litter-soil interactions in northern California's pygmy forest: a positive feedback? Biogeochemistry 42:189–220.

    Google Scholar 

  • Porter, L. J. 1989. Tannins, pp. 389–419, in J.B. Harborne (ed.). Methods in Plant Biochemistry, Vol 1. Plant Phenolics. Academic Press, San Diego, CA.

    Google Scholar 

  • Porter, L. J. and Woodruffe, J. 1984. Haemanalysis: The relative astringency of proanthocyanidin polymers. Phytochemistry 23:1255–1256.

    Google Scholar 

  • Porter, L. J., Hrstich, L. N., and Chan, B. G. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230.

    Google Scholar 

  • Preston, C. M. 1999. Condensed tannins of salal (Gaultheria shallon Pursh): A contributing factor to seedling “growth-check” on northern Vancouver Island?, pp. 825–841, in G.G. Gross, R.W. Hemingway and T. Yoshida (Eds.). Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Preston, C. M., Trofymow, J. A., Sayer, B. G., and Niu, J. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can. J. Bot. 75:1601–1613.

    Google Scholar 

  • Price, M. L., van Scoyoc, S., and Butler, L. G. 1978. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26:1214–1218.

    Google Scholar 

  • Robichaud, J. L. and Noble, A. C. 1990. Astringency and bitterness of selected phenolics in wine. J. Sci. Food Agric. 53:343–353.

    Google Scholar 

  • Roux, D. G., Ferreira, D., and Botha, J. J. 1980. Structural considerations in predicting the utilization of tannins. J. Agric. Food Chem. 28:216–222.

    Google Scholar 

  • Saint-Cricq de Gaulejac, N., Provost, C., and Vivas, N. 1999a. Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem. 47:425–431.

    Google Scholar 

  • Saint-Cricq de Gaulejac, N., Vivas, N., de Freitas, V., and Bourgeois, G. 1999b. The influence of various phenolic compounds on scavenging activity assessed by an enzymatic method. J. Sci. Food Agric. 79:1081–1090.

    Google Scholar 

  • Santos-Buelga, C. and Scalbert, A. 2000. Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 80:1094–1117.

    Google Scholar 

  • Sarkar, S. K. and Howarth, R. E. 1976. Specificity of the vanillin test for flavanols. J. Agric. Food Chem. 24:317–320.

    Google Scholar 

  • Scalbert, A. 1992. Quantitative methods for the estimation of tannins in plant tissues, pp. 259–280, in R. W. Hemingway and P. E. Laks (Eds.). Plant Polyphenols: Synthesis, Properties, Significance. Plenum Press, New York.

    Google Scholar 

  • Scalbert, A., Monties, B., and Janin, G. 1989. Tannins in wood: comparison of different estimation methods. J. Agric. Food Chem. 37:1324–1329.

    Google Scholar 

  • Schimel, J. P., van Cleve, K., Cates, R. G., Clausen, T. P., and Reichardt, P. B. 1996. Effects of balsam poplar (Populus balsamifera) tannins and low molecular weight phenolics on microbial activity in taiga floodplain soil: implications for changes in N cycling during succession. Can. J. Bot. 74:84–90.

    Google Scholar 

  • Schimel, J. P., Cates, R. G., and Ruess, R. 1998. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42:221–234.

    Google Scholar 

  • Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144–158.

    Google Scholar 

  • Stewart, J. L., Mould, F., and Mueller-Harvey, I. 2000. The effect of drying treatment on the fodder quality and tannin content of two provenances of Calliandra calothyrus Meissner. J. Sci. Food Agric. 80:1461–1468.

    Google Scholar 

  • Swain, T. and Goldstein, J. L. 1963. The quantitative analysis of phenolic compounds, pp. 131–146, in J. B. Pridham (Eds.). Methods in Polyphenol Chemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Swain, T. and Hillis, W. E. 1959. The phenolic constituents of Prunus domestica. 1. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:63–68.

    Google Scholar 

  • Wang, H., Cao, G., and Prior, R. L. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304–309.

    Google Scholar 

  • Wisdom, C. S., Gonzalez-Coloma, A., and Rundel, P. W. 1987. Ecological tannin assays: Evaluation of proanthocyanidins, protein binding assays and protein precipitation potential. Oecologia 72:395–401.

    Google Scholar 

  • Yu, Z. and Dahlgren, R. A. 2000. Evaluation of methods for measuring polyphenols in conifer foliage. J. Chem. Ecol. 26:2119–2140.

    Google Scholar 

  • Zucker, W. V. 1983. Tannins: Does structure determine function? An ecological perspective. Am. Nat. 121:335–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. C. Kraus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, T.E.C., Yu, Z., Preston, C.M. et al. Linking Chemical Reactivity and Protein Precipitation to Structural Characteristics of Foliar Tannins. J Chem Ecol 29, 703–730 (2003). https://doi.org/10.1023/A:1022876804925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022876804925

Navigation