Skip to main content
Log in

The expression of human FUT1 in HT-29/M3 colon cancer cells instructs the glycosylation of MUC1 and MUC5AC apomucins

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Recently, we have reported that in normal gastric epithelium, the expression of gastric apomucins MUC5AC and MUC6 is associated with the specific expression of type 1 and type 2 Lewis antigens, and FUT2 and FUT1 fucosyltransferases, respectively. Until now, there are no data demonstrating the direct implication of specific glycosyltransferases in the specific patterns of apomucin glycosylation.

HT29/M3 colon cancer cell line express MUC1, MUC5AC, type 1 Lewis antigens and FUT2 but not type 2 structures and FUT1, as it occurs in the epithelial cells of the gastric superficial epithelium. These cells were transfected with the cDNA of human FUT1, the α-1,2-fucosyltransferase responsible for the synthesis of type 2 Lewis antigens, to assess the implication of FUT1 in the glycosylation of MUC1 and MUC5AC.

The M3-FUT1 clones obtained express high levels of type 2 Lewis antigens: H type 2 and Ley antigens. Immunoprecipitation of MUC1 and MUC5AC apomucins gives the direct evidence that FUT1 catalyses the addition of α-1,2-fucose to these apomucins, supporting the hypothesis that the pattern of apomucin glycosylation is not only instructed by the mucin primary sequence but also by the set of glycosyltransferases expressed in each specific cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gendler SJ, Spicer AP, Epithelial mucin genes, Ann Rev Physiol 57, 607–34 (1995).

    Google Scholar 

  2. Lesuffleur T, Zweibaum A, Real FX, Mucins in normal and neoplastic human gastrointestinal tissues, Crit Rev Oncol 17, 153–80 (1994).

    Google Scholar 

  3. Bobek LA, Tsai H, Biesbrock AR, Levine MJ, Molecular cloning, sequence, and specificity of expression of the gene encoding the lowmolecular weight human salivary mucin (MUC7), J Biol Chem 268, 20563–9 (1993).

    PubMed  Google Scholar 

  4. Shankar V, Gilmore MS, Elkins RC, Sachdev GP, A novel human airway mucin cDNAencodes a protein with unique tandem-repeat organization, Biochem J 300 (Pt 2), 295–8 (1994).

    PubMed  Google Scholar 

  5. Williams SJ, McGuckin MA, Gotley DC, Eyre HJ, Sutherland GR, Antalis TM, Two novel mucin genes down-regulated in colorectal cancer identified by differential display, Cancer Res 59, 4083–9 (1999).

    PubMed  Google Scholar 

  6. Ho SB, Niehans GA, Lyftogt C, Yan PS, Cherwitz DL, Gum ET, Dahiya R, Kim YS, Heterogeneity of mucin gene expression in normal and neoplastic tissues, Cancer Res 53, 641–51 (1993).

    PubMed  Google Scholar 

  7. Carrato C, Balague C, de Bolos C, Gonzalez E, Gambus G, Planas J, Perini JM, Andreu D, Real FX, Differential apomucin expression in normal and neoplastic human gastrointestinal tissues, Gastroenterology 107, 160–72 (1994).

    PubMed  Google Scholar 

  8. Kontani K, Taguchi O, Narita T, Izawa M, Hiraiwa N, Zenita K, Takeuchi T, Murai H, Miura S, Kannagi R, Modulation of MUC1 mucin as an escape mechanism of breast cancer cells from autologous cytotoxic T-lymphocytes, Br J Cancer 84, 1258–64 (2001).

    PubMed  Google Scholar 

  9. Reis CA, David L, Seixas M, Burchell J, Sobrinho-Simoes M, Expression of fully and under-glycosylated forms ofMUC1mucin in gastric carcinoma, Int J Cancer 79, 402–10 (1998).

    Article  PubMed  Google Scholar 

  10. Gerken TA, Butenhof KJ, Shogren R, Effects of glycosylation on the conformation and dynamics of O-linked glycoproteins: Carbon-13 NMR studies of ovine submaxillary mucin, Biochemistry 28, 5536–43 (1989).

    PubMed  Google Scholar 

  11. Yin BW, Finstad CL, Kitamura K, Federici MG, Welshinger M, Kudryashov V, Hoskins WJ, Welt S, Lloyd KO, Serological and immunochemical analysis of Lewis y (Ley) blood group antigen expression in epithelial ovarian cancer, Int J Cancer 65, 406–12 (1996).

    PubMed  Google Scholar 

  12. Suwa T, Hinoda Y, Makiguchi Y, Takahashi T, Itoh F, Adachi M, Hareyama M, Imai K, Increased invasiveness ofMUC1andcDNAtransfected human gastric cancer MKN74 cells, Int J Cancer 76, 377–82 (1998).

    PubMed  Google Scholar 

  13. Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA, Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding an anti-adhesion molecule, Int J Cancer 88, 507–18 (2000).

    PubMed  Google Scholar 

  14. Larsen RD, Ernst LK, Nair RP, Lowe JB, Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-Dgalactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen, Proc Natl Acad Sci USA 87, 6674–8 (1990).

    PubMed  Google Scholar 

  15. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB, Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype, J Biol Chem 270, 4640–9 (1995).

    PubMed  Google Scholar 

  16. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB, A cloned human cDNA determines expression of a mouse stagespecific embryonic antigen and the Lewis blood group alpha( 1,3/1,4)fucosyltransferase, Genes Dev 4, 1288–303 (1990).

    PubMed  Google Scholar 

  17. Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LK, Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion, J Biol Chem 266, 17467–77 (1991).

    PubMed  Google Scholar 

  18. Weston BW, Nair RP, Larsen RD, Lowe JB, Isolation of a novel human alpha (1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group alpha (1,3/1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities, J Biol Chem 267, 4152–60 (1992).

    PubMed  Google Scholar 

  19. Weston BW, Smith PL, Kelly RJ, Lowe JB, Molecular cloning of a fourth member of a human alpha (1,3)fucosyltransferase gene family. Multiple homologous sequences that determine expression of the Lewis x, sialyl Lewis x, and difucosyl sialyl Lewis x epitopes, J Biol Chem 267, 24575–84 (1992).

    PubMed  Google Scholar 

  20. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T, Expression cloning of a novel alpha 1,3-fucosyltransferase that is involved in biosynthesis of the sialyl Lewis x carbohydrate determinants in leukocytes, J Biol Chem 269, 14730–7 (1994).

    PubMed  Google Scholar 

  21. Varki A, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3, 97–130 (1993).

    PubMed  Google Scholar 

  22. Hakomori S, New directions in cancer therapy based on aberrant expression of glycosphingolipids: Anti-adhesion and orthosignaling therapy, Cancer Cells 3, 461–70 (1991).

    PubMed  Google Scholar 

  23. Garrigues J, Anderson J, Hellstrom KE, Hellstrom I, Anti-tumor antibody BR96 blocks cell migration and binds to a lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes, J Cell Biol 125, 129–42 (1994).

    PubMed  Google Scholar 

  24. Goupille C, Hallouin F, Meflah K, Le Pendu J, Increase of rat colon carcinoma cells tumorigenicity by alpha(1-2) fucosyltransferase gene transfection, Glycobiology 7, 221–9 (1997).

    PubMed  Google Scholar 

  25. Boren T, Falk P, Roth KA, Larson G, Normark S, Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens, Science 262, 1892–5 (1993).

    PubMed  Google Scholar 

  26. Chan NW, Stangier K, Sherburne R, Taylor DE, Zhang Y, Dovichi NJ, Palcic MM, The biosynthesis of Lewis X in Helicobacter pylori, Glycobiology 5, 683–8 (1995).

    PubMed  Google Scholar 

  27. Aspinall GO, Monteiro MA, Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: Structures of the O antigen and core oligosaccharide regions, Biochemistry 35, 2498–504 (1996).

    PubMed  Google Scholar 

  28. Aspinall GO, Monteiro MA, Pang H, Walsh EJ, Moran AP, Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504): Structure of the O antigen chain and core oligosaccharide regions, Biochemistry 35, 2489–97 (1996).

    PubMed  Google Scholar 

  29. Ge Z, Chan NW, Palcic MM, Taylor DE, Cloning and heterologous expression of an alpha1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori, J Biol Chem 272, 21357–63 (1997).

    PubMed  Google Scholar 

  30. Monteiro MA, Chan KH, Rasko DA, Taylor DE, Zheng PY, Appelmelk BJ, Wirth HP, Yang M, Blaser MJ, Hynes SO, Moran AP, Perry MB, Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between h. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms, J Biol Chem 273, 11533–43 (1998).

    PubMed  Google Scholar 

  31. de Bolos C, Garrido M, Real FX, MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach, Gastroenterology 109, 723–34 (1995).

    PubMed  Google Scholar 

  32. Lopez-Ferrer A, de Bolos C, Barranco C, Garrido M, Isern J, Carlstedt I, Reis CA, Torrado J, Real FX, Role of fucosyltransferases in the association between apomucin and Lewis antigen expression in normal and malignant gastric epithelium, Gut 47, 349–56 (2000).

    PubMed  Google Scholar 

  33. de Bolos C, Real FX, Lopez-Ferrer A, Regulation of mucin and glycoconjugate expression: From normal epithelium to gastric tumors, Front Biosci 6, D1256–63 (2001).

    PubMed  Google Scholar 

  34. Lesuffleur T, Kornowski A, Augeron C, Dussaulx E, Barbat A, Laboisse C, Zweibaum A, Increased growth adaptability to 5-fluorouracil and methotrexate of HT-29 sub-populations selected for their commitment to differentiation, Int J Cancer 49, 731–7 (1991).

    PubMed  Google Scholar 

  35. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB, Molecular basis for H blood group deficiency in Bombay (Oh) and para-Bombay individuals, Proc Natl Acad Sci USA 91, 5843–7 (1994).

    PubMed  Google Scholar 

  36. Price MR, Edwards S, Owainati A, Bullock JE, Ferry B, Robbins RA, Baldwin RW, Multiple epitopes on a human breast-carcinomaassociated antigen, Int J Cancer 36, 567–74 (1985).

    PubMed  Google Scholar 

  37. Reis CA, David L, Nielsen PA, Clausen H, Mirgorodskaya K, Roepstorff P, Sobrinho-Simoes M, Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody, Int J Cancer 74, 112–21 (1997).

    PubMed  Google Scholar 

  38. Sakamoto J, Furukawa K, Cordón-Cardo C, Yin BW, Rettig WJ, Oettgen HF, Old LJ, Lloyd KO, Expression of Lewisa, Lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell lines, Cancer Res 46, 1553–61 (1986).

    PubMed  Google Scholar 

  39. Xing PX, Reynolds K, Tjandra JJ, Tang XL, McKenzie IF, Synthetic peptides reactive with anti-human milk fat globule membrane monoclonal antibodies, Cancer Res 50, 89–96 (1990).

    PubMed  Google Scholar 

  40. Rouger P, Gane P, Salmon C, Tissue distribution of H, Lewis and P antigens as shown by a panel of 18 monoclonal antibodies, Rev Fr Transfus Immunohematol 30, 699–708 (1987).

    PubMed  Google Scholar 

  41. Pastan I, Lovelace ET, Gallo MG, Rutherford AV, Magnani JL, Willingham MC, Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas, Cancer Res 51, 3781–7 (1991).

    PubMed  Google Scholar 

  42. Hovenberg HW, Davies JR, Carlstedt I, Different mucins are produced by the surface epithelium and the submucosa in human trachea: Identification of MUC5AC as a major mucin from the goblet cells, Biochem J 318 (Pt 1), 319–24 (1996).

    PubMed  Google Scholar 

  43. Pratt WS, Islam I, Swallow DM, Two additional polymorphisms within the hypervariable MUC1 gene: Association of alleles either side of the VNTR region, Ann Hum Genet 60 (Pt 1), 21–8 (1996).

    PubMed  Google Scholar 

  44. Van Klinken BJ, Dekker J, Buller HA, de Bolos C, Einerhand AW, Biosynthesis of mucins (MUC2-6) along the longitudinal axis of the human gastrointestinal tract, Am J Physiol 273, G296–302 (1997).

    PubMed  Google Scholar 

  45. Silverman HS, Parry S, Sutton-Smith M, Burdick MD, McDermott K, Reid CJ, Batra SK, Morris HR, Hollingsworth MA, Dell A, Harris A, In vivo glycosylation of mucin tandem repeats, Glycobiology 11, 459–71 (2001).

    PubMed  Google Scholar 

  46. Axelsson MA, Karlsson NG, Steel DM, Ouwendijk J, Nilsson T, Hansson GC, Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins, Glycobiology 11, 633–44 (2001).

    PubMed  Google Scholar 

  47. Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J, Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells, J Biol Chem 271, 33325–34 (1996).

    PubMed  Google Scholar 

  48. Dalziel M, Whitehouse C, McFarlane I, Brockhausen I, Gschmeissner S, Schwientek T, Clausen H, Burchell JM, Taylor-Papadimitriou J, The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1, J Biol Chem 276, 11007–15 (2001).

    PubMed  Google Scholar 

  49. Tetaert D, Ten Hagen KG, Richet C, Boersma A, Gagnon J, Degand P, Glycopeptide N-acetylgalactosaminyltransferase speci-ficities for O-glycosylated sites on MUC5AC mucin motif peptides, Biochem J 357, 313–20 (2001).

    PubMed  Google Scholar 

  50. Tetaert D, Richet C, Gagnon J, Boersma A, Degand P, Studies of acceptor site specificities for three members of UDPGalNAc: N-acetylgalactosaminyltransferases by using a synthetic peptide mimicking the tandem repeat of MUC5AC, Carbohydr Res 333, 165–71 (2001).

    PubMed  Google Scholar 

  51. Wesseling J, van der Valk SW, Vos HL, Sonnenberg A, Hilkens J, Episialin (MUC1) overexpression inhibits integrin-mediated cell adhesion to extracellular matrix components, J Cell Biol 129, 255–65 (1995).

    PubMed  Google Scholar 

  52. Zhang K, Baeckstrom D, Brevinge H, Hansson GC, Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to Eselectin-expressing endothelial cells, J Cell Biochem 60, 538–49 (1996).

    PubMed  Google Scholar 

  53. Regimbald LH, Pilarski LM, Longenecker BM, Reddish MA, Zimmermann G, Hugh JC, The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer, Cancer Res 56, 4244–9 (1996).

    PubMed  Google Scholar 

  54. Wesseling J, van der Valk SW, Hilkens J, A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membraneassociated mucin episialin/MUC1, Mol Biol Cell 7, 565–77 (1996).

    PubMed  Google Scholar 

  55. Van Klinken BJ, Einerhand AW, Buller HA, Dekker J, The oligomerization of a family of four genetically clustered human gastrointestinal mucins, Glycobiology 8, 67–75 (1998).

    PubMed  Google Scholar 

  56. Rio MC, Bellocq JP, Daniel JY, Tomasetto C, Lathe R, Chenard MP, Batzenschlager A, Chambon P, Breast cancer-associated pS2 protein: Synthesis and secretion by normal stomach mucosa, Science 241, 705–8 (1988).

    PubMed  Google Scholar 

  57. Newton JL, Allen A, Westley BR, May FE, The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach, Gut 46, 312–20 (2000).

    PubMed  Google Scholar 

  58. Tomasetto C, Masson R, Linares JL, Wending C, Lefebvre O, Chenard MP, Rio MC, pS2/TFF1 interacts directly with theVWFC cysteine-rich domains of mucins, Gastroenterology 118, 70–80 (2000).

    PubMed  Google Scholar 

  59. Rio MC, Chenard MP, Wolf C, Marcellin L, Tomasetto C, Lathe R, Bellocq JP, Chambon P, Induction of pS2 and hSP genes as markers of mucosal ulceration of the digestive tract, Gastroenterology 100, 375–9 (1991).

    PubMed  Google Scholar 

  60. Wright NA, Poulsom R, Stamp G, Van Norden S, Sarraf C, Elia G, Ahnen D, Jeffery R, Longcroft J, Pike C, et al., Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease, Scand J Gastroenterol Suppl 193, 76–82 (1992).

    PubMed  Google Scholar 

  61. Lefebvre O, Wolf C, Kedinger M, Chenard MP, Tomasetto C, Chambon P, Rio MC, The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibit distinct patterns of expression, J Cell Biol 122, 191–8 (1993).

    PubMed  Google Scholar 

  62. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, Wending C, Tomasetto C, Chambon P, Rio MC, Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein, Science 274, 259–62 (1996).

    PubMed  Google Scholar 

  63. Van den Brink GR, Tytgat KM, Van der Hulst RW, Van der Loos CM, Einerhand AW, Buller HA, Dekker J, H pylori colocalises with MUC5AC in the human stomach, Gut 46, 601–7 (2000).

    PubMed  Google Scholar 

  64. Sepp A, Skacel P, Lindstedt R, Lechler RI, Expression of alpha-1,3-galactose and other type 2 oligosaccharide structures in a porcine endothelial cell line transfected with human alpha-1,2-fucosyltransferase cDNA, J Biol Chem 272, 23104–10 (1997).

    PubMed  Google Scholar 

  65. Sharma A, Okabe J, Birch P, McClellan SB, Martin MJ, Platt JL, Logan JS, Reduction in the level of Gal(alpha1,3)Gal in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase, Proc Natl Acad Sci USA 93, 7190–5 (1996).

    PubMed  Google Scholar 

  66. Majuri ML, Niemela R, Tiisala S, Renkonen O, Renkonen R, Expression and function of alpha 2,3-sialyl-and alpha 1,3/1,4-fucosyltransferases in colon adenocarcinoma cell lines: Role in synthesis of E-selectin counter-receptors, Int J Cancer 63, 551–9 (1995).

    PubMed  Google Scholar 

  67. Gouyer V, Leteurtre E, Delmotte P, Steelant WF, Krzewinski-Recchi MA, Zanetta JP, Lesuffleur T, Trugnan G, Delannoy P, Huet G, Differential effect of GalNAcalpha-O-bn on intracellular trafficking in enterocytic HT-29 and Caco-2 cells: Correlation with the glycosyltransferase expression pattern, J Cell Sci 114, 1455–71 (2001).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carme de Bolós.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Ferrer, A., de Bolós, C. The expression of human FUT1 in HT-29/M3 colon cancer cells instructs the glycosylation of MUC1 and MUC5AC apomucins. Glycoconj J 19, 13–21 (2002). https://doi.org/10.1023/A:1022576712961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022576712961

Navigation