Skip to main content
Log in

Structural Equation Models for Evaluating Dynamic Concepts Within Longitudinal Twin Analyses

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

A great deal of prior research using structural equation models has focused on longitudinal analyses and biometric analyses. Some of this research has even considered the simultaneous analysis of both kinds of analytic problems. The key benefits of these kinds of analyses come from the estimation of novel parameters, such as the heritability of changes. This paper discusses some recent extensions of longitudinal multivariate models that can be informative within biometric designs. In the methods section we review a previous latent growth structural equation analysis of the New York Twin (NYT) longitudinal data (from McArdle et al., 1998). In the models section we recast this growth model in terms of latent difference scores, add several new dynamic components, including coupling parameters, and consider biometric components and examine model stability. In the results section we present new univariate and bivariate dynamic estimates and tests of various dynamic hypotheses for the NYT data, and we consider a few ways to interpret the age-related biometric components of these models. In the discussion we consider our limitations and present suggestions for future dynamic-genetic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arminger, G. (1987). Structural equation modeling in research on human development and aging. In K. W. Shaie, R. T. Camp-bell, W. Meredith, and S. C. Rawlings (eds.), Methodological issues in aging research (pp. 71-170). New York: Springer.

    Google Scholar 

  • Baker, L. A., DeFries, J. C., and Fulker, D. W. (1983). Longitudinal stability of cognitive ability in the Colorado Adoption Project. Child Dev. 54:290-297.

    PubMed  Google Scholar 

  • Bank, L., and Jarvik, L. F. (1978). A longitudinal study of aging human twins. In E. L. Schneider (ed.), The genetics of aging (pp. 303-333). New York: Plenum.

    Google Scholar 

  • Block, J. B. (1968). Hereditary components in the performance of twins on the WAIS. In S. G. Vandenberg (ed.), Progress in human behavior genetics (pp. 221-228). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Blum, J. E., Clark, E. T., and Jarvik, L. F. (1973). The New York State Psychiatric Institute Study of Aging Twins. In L. F. Jarvik, C. Eisdorfer, and J. Blum (eds.), Intellectual functioning in adults (pp. 13-19). New York: Springer.

    Google Scholar 

  • Blum, J. E., Fosshage, J. L., and Jarvik, L. F. (1972). Intellectual changes and sex differences in octogenarians: A twenty year longitudinal study of aging. Dev. Psychol. 7:178-187.

    Google Scholar 

  • Boker, S. M. (2001). Differential models and “differential structural equation modeling of intraindividual variability.” In L. M. Collins and A. G. Sayer (eds.), New methods for the analysis of change. Decade of behavior (pp. 5-27). Washington, DC: American Psychological Association.

    Google Scholar 

  • Boker, S. M., and McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Exp. Aging Res. 21:77-93.

    PubMed  Google Scholar 

  • Boomsma, D. I., Martin, N. G., and Molenaar, P. C. (1989). Factor and simplex models for repeated measures: Application to two psychomotor measures of alcohol sensitivity in twins. Behav. Genet. 19:79-96.

    PubMed  Google Scholar 

  • Botwinick, J. (1978). Aging and behavior: A comprehensive integration of research findings. New York: Springer.

    Google Scholar 

  • Browne, M., and Cudeck, R. (1993). Alternative ways of assessing model fit. In K., Bollen and S. Long (eds.), Testing structural equation models (pp. 136-162). Beverly Hills, CA: Sage.

    Google Scholar 

  • Cattell, R. B. (1960). The multiple abstract variance analysis equations and solutions for nature:nurture research on continuous variables. Psychol. Rev. 67:353-372.

    PubMed  Google Scholar 

  • Cattell, R. B. (1970). Separating endogenous, exogenous, ecogenic, and epogenic component curves in developmental data. Dev. Psychol. 3:151-162.

    Google Scholar 

  • Cattell, R. B. (1971). Intelligence: Its structure, growth and action. Amsterdam: Elsevier.

    Google Scholar 

  • Cattell, R. B. (1973). Unravelling maturational and learning developments by the comparative MAVA and structural learning approaches. In J. R. Nesselroade and J. Reese (eds.), Life span developmental psychology. New York: Academic Press.

    Google Scholar 

  • Cattell, R. B. (1982). The inheritance of personality and ability: Research methods and findings. New York: Academic Press.

    Google Scholar 

  • Cattell, R. B. (1983). Lets End the Duel. American Psychologist 38:769-776.

    PubMed  Google Scholar 

  • Cattell, R. B. (1987). Intelligence: Its structure, growth and action. Amsterdam: North-Holland.

    Google Scholar 

  • Chipeur, H. M., Rovine, M., and Plomin, R. (1990). LISREL modelling: Genetic and evironmental influences on IQ revisited. Intelligence 14:11-29.

    Google Scholar 

  • Coleman, J. (1968). The mathematical study of change. In H. M. Blalock and A. B. Blalock (eds.), Methodology in social research (pp. 428-475). New York: McGraw-Hill.

    Google Scholar 

  • Dolan, C. V., Molenaar, P. C. M., and Boomsma, D. I. (1991). Longitudinal genetic analyses of longitudinal means and covariance structure using the simplex model in LISREL. Behav. Genet. 21:49-61.

    PubMed  Google Scholar 

  • Eaves, L. J., Long, J., and Heath, A. C. (1986). A theory of developmental change in quantitative phenotypes applied to cognitive development. Behav. Genet. 16:143-162.

    PubMed  Google Scholar 

  • Eichorn, D. E., Clausen, J. A., Haan, N., Honzik, M. A. and Mussen, P. H. (eds.). (1981). Past and present in middle life. New York: Academic Press.

    Google Scholar 

  • Erlenmeyer-Kimling, L., and Jarvik, L. F. (1963). Genetics and intelligence: A review. Science 142:1477-1479.

    PubMed  Google Scholar 

  • Falconer, D. S. (1990). Introduction to quantitative genetics (3rd ed.). Edinburg: Oliver and Boyd.

    Google Scholar 

  • Featherman, D. L., Lerner, R. M., and Perlmutter, M. (eds.). (1994). Life-span development and behavior (vol. 12). Hills-dale, NJ: Erlbaum.

    Google Scholar 

  • Finkel, D., Pedersen, N. L., McGue, M., and McClearn, G. E. (1995). Heritability of cognitive abilities in adult twins: Comparison of Minnesota and Swedish data. Behav. Genet. 25:421-432.

    PubMed  Google Scholar 

  • Funder, C. D., Parke, R. D., Tomlinson-Keasey, C., and Widaman, K. (eds.). (1993). Studying lives through time: Personality and development. Washington, DC: American Psychological Association.

    Google Scholar 

  • Gottlieb, G. (1991). Experimential canalization of behavioral development: Theory. Dev. Psychol. 27:4-13.

    Google Scholar 

  • Hamagami, F., and McArdle, J. J. (2001). Advanced studies of individual differences linear dynamic models for longitudinal data analysis. In G. Marcoulides and R. Schumacker (eds.), New developments and techniques in structural equation modeling (pp. 203-246). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hauspie, R. C., Bergman, P., Bielicki, T., and Susanne, R. (1994). Genetic variance in the pattern of the growth curve for height: A longitudinal analysis of male twins. Ann. Hum. Biol. 21:347-362.

    PubMed  Google Scholar 

  • Heath, A. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., and Fulker, D. W. (1989). Testing structural equation models for twin data using LISREL. Behav. Genet. 19:9-35.

    PubMed  Google Scholar 

  • Henderson, N. D. (1975). Gene-environment interaction in human behavioral development. In K. W. Schaie, V. E. Anderson, G. E. McClearn, and J. Money (eds.), Developmental Human Behavior Genetics (pp. 5-24). Lexington, MA: Lexington Books.

    Google Scholar 

  • Henderson, N. D. (1982). Human behavior genetics. Ann. Rev. Psychol. 33:403-440.

    Google Scholar 

  • Hewitt, J. K., Eaves, L. J., Neale, M. C., and Meyer, J. M. (1988). Resolving causing of developmental continuity or tracking: I. Longitudinal twin studies during growth. Behav. Genet. 18:133-151.

    PubMed  Google Scholar 

  • Horn, J. L. (1980). Concepts of intellect in relation to learning and adult development. Intelligence 4:285-317.

    Google Scholar 

  • Horn, J. L., and Cattell, R. B. (1967). Age differences in fluid and crystalized intelligence. Acta Psychol. 26:107-129.

    Google Scholar 

  • Horn, J. L., and McArdle, J. J. (1980). Perspectives on mathematical and statistical model building (MASMOB) in research on aging. In L. W. Poon (Ed.), Aging in the 1908's: Selected contemporary issues in the psychology of aging (pp. 503-541). Washington, DC: American Psychological Association.

    Google Scholar 

  • Horn, J. L., and Noll, J. (1996). Human cognitive capabilities: Gf–Gc theory. In D. P. Flanagan, J. L. Genshaft, and P. L. Harrison (eds.), Beyond traditional intellectual assessment: Contemporary and emerging theories, tests and issues (pp. 53-91). New York: Guilford.

    Google Scholar 

  • Hsia, D. Y. (1968). Human developmental genetics. Chicago: Year Book Medical Publishers.

    Google Scholar 

  • Huxley, J. S. (1932). Problems of relative growth. London: Methven and Co.

    Google Scholar 

  • Jarvik, L. F., Blum, J. E., and Varma, A. O. (1972). Genetic components and intellectual functioning during senescence: A 20-year study of aging twins. Behav. Genet. 2:159-171.

    PubMed  Google Scholar 

  • Jarvik, L. F., Eisdorfer, C., and Blum, J. E. (eds.). (1973). Intellectual functioning in adults: Psychological and biological influences. New York: Springer.

    Google Scholar 

  • Jarvik, L. F., Kallman, F. J., and Falek, A. (1962). Intellectual changes in aged twins. J. Gerontol. 17:289-294.

    PubMed  Google Scholar 

  • Jarvik, L. F., Kallman, F. J., Lorge, I., and Falek, A. (1962). Longitudinal study of intellectual changes in senescent twins. In C. Tibbitts and W. Donahue (eds.), Social and psychological aspects of aging (pp. 839-859). New York: Columbia University Press.

    Google Scholar 

  • Johnson, R. C., McClearn, G. E., Yuen, S., Nagaoshi, C., Ahern, F. M., and Cole, R. E. (1985). Galton's data a century later. American Psychologist, 40:875-892.

    PubMed  Google Scholar 

  • Jones, M. C., Bayley, N., Macfarlane, J. W., and Honzik, M. P. (eds.). (1971). The course of human development. Waltham, MA: Xerox College Publication.

    Google Scholar 

  • Joreskog, K. G., and Sorbom, D. (1979). Advances in factor analysis and structural equation models. In J. Magdson (ed.), Cambridge, MA: Abt Books.

    Google Scholar 

  • Joreskog, K. G., and Sorbom, D. (1988). LISREL VII: A guide to the program and applications. Chicago: SPSS Inc.

    Google Scholar 

  • Kallman, F. J., Feingold, L., and Bondy, E. (1951). Comparative adaptational, social, and psychometic data on the life histories of senescent twin pairs. Am. J. Hum. Genet. 3:65-73.

    PubMed  Google Scholar 

  • Kohs, S. C. (1923). Intelligence measurement: A psychological and statistical study based upon the blocks-design tests. New York: Macmillan.

    Google Scholar 

  • Lange, K., Westlake, J., and Spence, M. A. (1976). Extensions to pedigree analysis: III. Variance components by the scoring method. Annals of Human Genetics 39:485-491.

    PubMed  Google Scholar 

  • Loehlin, J. C., Horn, J. M., and Willerman, L. (1989). Modeling IQ change: Evidence from the Texas Adoption Project. Child Dev. 60:993-1004.

    PubMed  Google Scholar 

  • Lezak, M. D. (1976). Neuropsychological Assessment. New York: Oxford University Press.

    Google Scholar 

  • Little, R. J. A., and Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York: Wiley & Son.

    Google Scholar 

  • Lytton, H., Watts, D., and Dunn, B. (1988). Stability of genetic determination from age 2 to 9: A longitudinal twin study. Soc. Biol. 35:62-73.

    PubMed  Google Scholar 

  • Martin, N., and Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity 138:79-95.

    Google Scholar 

  • Matarazzo, J. D. (1980). Wechsler's measurement and appraisal of adult intelligence. New York: Oxford University Press.

    Google Scholar 

  • McArdle, J. J., Connell, J., and Goldsmith, H. H. (1980). Latent variable approaches to measurement, structure, longitudinal stability, and genetic influences: Preliminary results from the study of behavioral style. Behavior Genetics 10:609.

    Google Scholar 

  • McArdle, J. J. (1986). Latent variable growth within behavior genetic models. Behav. Genet. 16:163-200.

    PubMed  Google Scholar 

  • McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In J. R. Nesselroade and R. B. Cattell (eds.), The handbook of multivariate experimental psychology, (vol. 2, pp. 561-614). New York: Plenum.

    Google Scholar 

  • McArdle, J. J. (1994). Structural factor analysis experiments with incomplete data. Multivariate Behavioral Research 29:409-454.

    Google Scholar 

  • McArdle, J. J. (2001). A latent difference score approach to longitudinal dynamic structural analyses. In R. Cudeck, S. du Toit, and D. Sorbom (eds.), Structural equation modeling: Present and future (pp. 342-380). Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  • McArdle, J. J., Connell, J., and Goldsmith, H. H. (1980). Latent variable approaches to measurement, structure, longitudinal stability, and genetic influences: Preliminary results from the study of behavioral style. Behav. Genet. 10:609.

    Google Scholar 

  • McArdle, J. J., and Goldsmith, H. H. (1984). Multivariate biometric models of the WAIS. Behav. Genet. 14:609.

    Google Scholar 

  • McArdle, J. J., and Goldsmith, H. H. (1990). Some alternative structural equation models for multivariate biometric analyses. Behav. Genet. 20:569-608.

    PubMed  Google Scholar 

  • McArdle, J. J., Goldsmith, H. H., and Horn, J. L. (1981). Genetic structural equation models of Fluid and Crystallized intelligence. Behav. Genet. 11:607.

    Google Scholar 

  • McArdle, J. J., and Hamagami, F. (1992). Modeling incomplete longitudinal data using latent growth structural equation models. In L. Collins and J. L. Horn (eds.), Best methods for the analy-sis of change (pp. 276-304). Washington, DC: APA Press.

    Google Scholar 

  • McArdle, J. J., and Hamagamit, F. (1996). Multilevel models from a multiple group structural equation perspective. In G. Marcoulides and R. Schumacker (eds.), Advanced structural equation modeling: Issues and techniques (pp. 89-124). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • McArdle, J. J., and Horn, J. L. (1997). A mega analysis of the WAIS: Adult intelligence across lifespan. Unpublished manuscript. University of Virginia.

  • McArdle, J. J., and Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. Collins and A. Sayer (eds.), New methods for the analysis of change: Decade of behavior (pp. 139-175). Washington, DC: APA Press.

    Google Scholar 

  • McArdle, J. J., Hamagami, F., Meredith, W., and Bradway, K. P. (2001). Modeling the dynamic hypotheses of Gf–Gc theory using longitudinal lifespan data. Learning and Individual Differences 12:53-79.

    Google Scholar 

  • McArdle, J. J., and McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. Br. J. Math. Stat. Psychol. 37:234-251.

    PubMed  Google Scholar 

  • McArdle, J. J., and Nesselroade, J. R. (1994). Structuring data to study development and change. In S. H. Cohen and H. W. Reese (eds.), Lifespan developmental psychology: Methodological innovations (pp. 223-268). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • McArdle, J. J., and Prescott, C. A. (1996). Contemporary models for the biometric genetic analysis of intellectual abilities. In D. P. Flanagan, J. L. Genshaft, and P. L. Harrison (eds.), Beyond traditional intellectual assessment: Contemporary and emerging theories, tests and issues, (pp. 403–436). New York: Guilford. 403-436.

    Google Scholar 

  • McArdle, J. J., Prescott, C. A., Hamagami, F., and Horn, J. L. (1998). A contemporary method for developmental-genetic analyses of age changes in intellectual abilities. Dev. Neuropsychol. 14:69-114.

    Google Scholar 

  • McArdle, J. J., and Woodcock, R. W. (1997). Expanding test-retest designs to include developmental time-lag components. Psychol. Meth. 2:403-435.

    Google Scholar 

  • McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A., and Plomin, R. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276:1560-1563.

    PubMed  Google Scholar 

  • McNemar, Q. (1942). The revision of the Stanford-Binet scale. Boston: Houghton-Mifflin.

    Google Scholar 

  • Neale, M. C. (1993–1998). Mx statistical modeling. Unpublished program manual, Department of Human Genetics, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA.

    Google Scholar 

  • Neale, M. C., and Cardon, L. R. (1992). Methodology for genetic studies of twins and families. London: Kluwer Academic Press.

    Google Scholar 

  • Neale, M. C., Heath, A. C., Hewitt, J. K., Eaves, L. J., and Fulker, D. W. (1989). Fitting genetic models with LISREL: Hypothesis testing. Behav. Genet. 19:37-49.

    PubMed  Google Scholar 

  • Neale, M. C., and McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Res. 3:1-13.

    Google Scholar 

  • Nesselroade, J. R., and Baltes, P. B. (eds.). (1979). Longitudinal research in the study of behavior and development. New York: Academic Press.

    Google Scholar 

  • Pedersen, N. L., and Harris, J. H. (1991). Developmental behavioral genetics and successful aging. In P. B. Baltes and M. M. Baltes (eds.), Successful aging: Perspectives from the behavioral sciences (pp. 359-380). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pedersen, N. L., Plomin, R., Nesselroade, J. R., and McClearn, G. E. (1992). A quantitative genetic analysis of cognitive abilities during the second half of the life-span. Psychol. Sci. 3:346-353.

    Google Scholar 

  • Plomin, R., Pedersen, N. L., Lichtenstein, P., and McClearn, G. E. (1994). Variability and stability in cognitive abilities are largely genetic later in life. Behav. Genet. 24:207-216.

    PubMed  Google Scholar 

  • Rogosa, D. (1980). A critique of cross-lagged correlation. Psychological Bulletin 88:245-258.

    Google Scholar 

  • Reznick, J. S., Corley, R., and Robinson, J. (1997). A longitunal twin study of intelligence in the second year. Monographs of the Society for Research in Child Development. 62 (1), No. 249.

    Google Scholar 

  • Schaie, K. W. (1996). Intellectual development in adulthood. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schaie, K. W., Anderson, V. E., McClearn, G. E., and Money, J. (eds.). (1975). Developmental human behavior genetics. Lexington, MA: Lexington Books.

    Google Scholar 

  • Schneider, E. L. (ed.). (1978). The genetics of aging. New York: Plenum.

    Google Scholar 

  • Sontag, L. W., Baker, C. T., and Nelson, V. L. (1958). Mental growth and personality development: A longitudinal study. Soc. Res. Child Devel. Monogr. 23 (2): Author please supply missing information

  • Steuer, J., LaRue, A., Blum, J., and Jarvik, L. F. (1981). Critical loss in the eighth and ninth decades. J. Gerontol. 36:211-213.

    PubMed  Google Scholar 

  • Tanner, J. M. (ed.). (1960). Human growth. New York: Pergamon.

    Google Scholar 

  • Vandenberg, S. G. (1967). Hereditary factors in normal personality traits (as measured by inventories). In Wortis, J. (ed.), Recent Advances in Biological Psychiatry. Volume 9. New York: Plenum, pp. 65-104.

    Google Scholar 

  • Vandenberg, S. G., and Falkner, F. (1965). Heredity factors in human growth. Hum. Biol. 37:357-365.

    PubMed  Google Scholar 

  • Waddington, C. H. (1962). New patterns in genetics and development. New York: Columbia University Press.

    Google Scholar 

  • Wechsler, D. (1939). Wechsler-Bellevue Intelligence Scale. New York: Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1955). Manual for the Wechsler Adult Intelligence Scale. New York: Psychological Corporation.

    Google Scholar 

  • Wilson, R. S. (1972). Twins: Early mental development. Science 175:915-917.

    Google Scholar 

  • Wilson, R. S. (1974). Twins: Mental development in the preschool years. Developmental Psychology 10 (4): 580-588.

    Google Scholar 

  • Wilson, R. S. (1983). The Louisville Twin Study: Developmental synchronies in behavior. Child Development 54:298-316.

    PubMed  Google Scholar 

  • Wilson, R. (1978). Synchronies in mental development: An epigenetic perspective. Science 202(4371):939-948.

    PubMed  Google Scholar 

  • Wilson, R. (1986). Continuity and change in cognitive ability profile. Behav. Genet. 16:45-60.

    PubMed  Google Scholar 

  • Woodcock, R. W. (1990). Theoretical foundations of the WJ-R measures of cognitive ability. Journal of Psychoeducational Assessment 8:231-258.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McArdle, J.J., Hamagami, F. Structural Equation Models for Evaluating Dynamic Concepts Within Longitudinal Twin Analyses. Behav Genet 33, 137–159 (2003). https://doi.org/10.1023/A:1022553901851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022553901851

Navigation