Skip to main content
Log in

Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cloning of OSCs required for triterpene synthesis from legume species that are amenable to molecular genetics will provide tools to address the importance of triterpenes and their derivatives during normal plant growth and development and also in interactions with symbionts and pathogens. Here we report the cloning and characterization of a total of three triterpene synthases from the legume species Medicago truncatula and Lotus japonicus. These include a β-amyrin synthase from M. truncatula (MtAMYI) and a mixed function triterpene synthase from Lotus japonicus (LjAMY2). A partial cDNA predicted to encode a β-amyrin synthase (LjAMY1) was also isolated from L. japonicus. The expression patterns of MtAMY1, LjAMY1 and LjAMY2 and of additional triterpene synthases previously characterised from M. truncatula and pea differ in different plant tissues and during nodulation, suggesting that these enzymes may have distinct roles in plant physiology and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, I., Ebizuka, Y. and Sankawa, U. 1988. Purification of 2,3-oxidosqualene;cycloartenol cyclase from pea seedlings. Chem. Pharm. Bull. 36: 5031–5034.

    Google Scholar 

  • Abe. I., Sankawa, U. and Ebizuka, Y. 1989. Purification of 2,3-Oxidosqualene – beta amyrin cyclase from pea seedlings. Chem. Pharm. Bull. 37 (2): 536–538.

    Google Scholar 

  • Abe, I., Rohmer, M. and Prestwich, G.D. 1993. Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93: 2189–2206.

    Google Scholar 

  • Abe, I. and Prestwich, G.D. 1995. Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231–234.

    Google Scholar 

  • Ali, M.S., Ahmad, F., Ahmad, V.U., Azhar, I. and Usmanghani, K. 2001. Unusual chemical constituents of Lotus garcinii (Fabaceae). Turkish J.Chem. 25: 107–112 2001.

    Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acid Res. 25: 3389–3402.

    Google Scholar 

  • Baisted, D.J. 1971. Sterol and triterpene synthesis in the developing and germinating pea seed. Biochem. J. 124: 375–383.

    Google Scholar 

  • Cook, D.R. 1999. Medicago truncatula – a model in the making. Curr. Opin. Plant Biology 2: 301–304.

    Google Scholar 

  • Corey, E.J., Matsuda, S.P.T. and Bartel, B. 1993. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc. Natl. Acad. Sci. USA 90: 11628–11632.

    Google Scholar 

  • Dellaporta, S., Wood, L.G. and Hincks, J.B. 1983. A plant DNA minipreparation. Version II. Plant. Mol. Biol. Report 1: 19–21.

    Google Scholar 

  • deVries, S.C., Springer, J. and Wessels, J.H.G. 1982. Diversity of abundant messenger RNA sequences and patterns of protein synthesis in etiolated and greened pea seedlings. Planta 156: 129–135.

    Google Scholar 

  • Felsenstein, J. 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 266, 418–427.

    Google Scholar 

  • Gamas, P., Niebel, F.D.C., Lescure, N. and Cullimore, J.V. 1996. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol. Plant-Microbe Interact. 9: 233–242.

    Google Scholar 

  • Gogorcena, Y., Gordon, A.J., Escuredo, P.R., Minchin, F.R., Witty, J.F., Moran, J.F. and Becana, M. 1997. Nitrogen fixation, carbon metabolism, and oxidative damage in nodules of dark-stressed common bean plants. Plant Physiol. 113: 1193–1201.

    Google Scholar 

  • Grandmougin-Ferjani, A., Dalpe, Y., Hartmann, M.A., Laruelle, F. and Sancholle, M. 1999. Sterol distribution in arbuscular mycorrhizal fungi. Phytochemistry 50: 1027–1031.

    Google Scholar 

  • Haralampidis, K., Trojanowska, M. and Osbourn, A.E. 2001a. Biosynthesis of triterpenoid saponins in plants. Adv. Biochem. Eng./Biotechnology 75: 31–49.

    Google Scholar 

  • Haralampidis, K., Bryan, G., Qi, X., Papadopoulou, K., Bakht, S., Melton, R. and Osbourn, A. 2001b. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl. Acad. Sci. USA 98: 13431–13436.

    Google Scholar 

  • Hayashi, H., Huang, P.Y., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., Kushiro, T., Shibuya, M. and Ebizuka, Y. 2001a. Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosynthesis in liquorice. Biol. and Pharm. Bull. 24: 912–916.

    Google Scholar 

  • Hayashi, H., Huang, P.Y., Kirakosyan, A., Inoue, K., Hiraoka, N., Ikeshiro, Y., Yazaki, K., Tanaka, S., Kushiro, T., Shibuya, M. and Ebizuka, Y. 2001b. Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid. Eur. J. Biochem. 268: 6311–6317.

    Google Scholar 

  • Hernandez, L.E. and Cooke, D.T. 1996. Lipid composition of symbiosomes from pea root nodules. Phytochemistry 42: 341–346.

    Google Scholar 

  • Herrera, J.B.R., Bartel, B., Wilson, W.K. and Matsuda, S.P.T. 1998. Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene. Phytochemistry 49: 1905–1911.

    Google Scholar 

  • Hoffmann, B., Trinh, T.H., Leung, J., Kondorosi, A. and Kondorosi, E. 1997. A new Medicago truncatula line with superior in vitro regeneration, transformation, and symbiotic properties isolated through cell culture selection. Mol. Plant-Microbe Interact. 10: 307–315.

    Google Scholar 

  • Hostettmann, K.A. and Marston, A. 1991. Saponins (Cambridge Univ. Press, Cambridge, UK)

    Google Scholar 

  • Huhman, D.V. and Sumner, L.W. 2002. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347–360.

    Google Scholar 

  • Husselstein-Muller, T., Schaller, H. and Benveniste, P. 2001. Molecular cloning and expression in yeast of 2,3-oxidosqualenetriterpenoid cyclases from A rabidopsis thaliana. Plant Mol. Biol. 45: 75–92.

    Google Scholar 

  • Jurzysta, M., Burda, S., Oleszek, W., Ploszynski, M., Small, E. and Nozzolillo, C. 1992. Chemical-composition of seed saponins as a guide to the clasification of Medicago species. Can. J. Bot. 70: 1384–1387.

    Google Scholar 

  • Kushiro, T., Shibuya, M. and Ebizuka, Y. 1998a. Beta-amyrin synthase – Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238–244.

    Google Scholar 

  • Kushiro, T., Shibuya, M. and Ebizuka, Y. 1998b. Molecular cloning of oxidosqualene cyclase cDNA from Panax ginseng. The isogene that encodes β-amyrin synthase. Towards Natural Medicine Research in the 21st Century, Excerpta Medica International Congress Series 1157 (Ageta, H., Aimi, N., Ebizuka, Y., Fujita, T. & Honda, G., eds.), pp. 421–427. Elsevier ScienceBV, Amsterdam, the Netherlands.

    Google Scholar 

  • Kushiro, T., Shibuya, M. and Ebizuka, Y. 1999a. Chimeric triterpene synthasse. A possible model for multifunctional triterpene synthase. J. Am Chem. Soc. 121: 1208–1216.

    Google Scholar 

  • Kushiro, T., Shibuya, M. and Ebizuka, Y. 1999b. Cryptic regiospeci-ficity in deprotonation step of triterpene biosynthesis catalyzed by new members of lupeol synthase. Tetrahedron Letts. 40: 5553–5556.

    Google Scholar 

  • Kushiro, T., Shibuya, M., Masuda, K. and Ebizuka, Y. 2000a. A novel multifunctional triterpene synthase from Arabidopsis thaliana. Tetrahedron Letts. 41: 7705–7710.

    Google Scholar 

  • Kushiro, T., Shibuya, M., Masuda, K. and Ebizuka, Y. 2000b. Mutational studies on triterpene synthases: Engineering lupeol synthase into beta-amyrin synthase. J. Am. Chem. Soc. 122: 6816–6824.

    Google Scholar 

  • Matsuda, S.P.T. 1998. On the diversity of oxidosqualene cyclases. Biochemical Principles and Mechanisms of Biosynthesis and Biodegradation of Polymers. (A. Steinbüchel, ed), pp. 300–307. Wiley-VCH, Weinheim.

    Google Scholar 

  • Morita, M., Shibuya, M., Kushiro, T., Masuda, K. and Ebizuka, Y. 2000. Molecular cloning and functional expression of triterpene synthases from pea (Pisum sativum) – New alpha-amyrinproducing enzyme is a multifunctional triterpene synthase. Eur. J. Biochem. 267 (12): 3453–3460.

    Google Scholar 

  • Morrissey, J.P. and Osbourn, A.E. 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Revs. 63: 708–724.

    Google Scholar 

  • Nes, W. D. and Heftmann, E. 1981. A comparison of triterpenoids with steroids as membrane components. J. Nat. Prod. 44, 377–400.

    Google Scholar 

  • Nes, W.R. and McKean, M.L. 1977. Biochemistry of steroids and other isoprenoids, University Park Press, Baltimore.

    Google Scholar 

  • Ohana, P., Delmer, D.P., Carlson, R.W., Glushka, J., Azadi, P., Bacic, T. and Benziman, M. 1998. Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter xylinum. Plant and Cell Physiol. 39: 144–152.

    Google Scholar 

  • Oleszek, W., Jurzysta, M., Ploszynski, M., Colquhoun, I.J., Price, K.R., and Fenwick, G.R. 1992. Zahnic acid tridesmoside and other dominant saponins from alfalafa (Medicago sativa L.) aerial parts. J. Ag. Food Chemistry 40: 191–196.

    Google Scholar 

  • Palmer, M.A. and Bowden, B.N. 1977. Variation in sterol and triterpene content of developing Sorghum bicolor grain. Phytochemistry 16: 459–463.

    Google Scholar 

  • Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J. and Osbourn, A.E. 1999. Compromised disease resistance in saponindeficient plants. Proc. Natl. Acad. Sci. USA 96: 12923–12928.

    Google Scholar 

  • Poralla, K., Hewelt, A., Prestwich, G.D., Abe, I., Reipen, I. and Sprenger, G. 1994. A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157–8.

    Google Scholar 

  • Price, K.R., Johnson, I.T. and Fenwick, G.R. 1987. The Chemistry and biological significance of saponins in food and feedingstuffs. Crit. Rev. Food Sci. Nutr. 26: 27–135

    Google Scholar 

  • Rahman, A., Ahamed, A., Amakawa, T., Goto, N. and Tsurumi, S. 2001. Chromosaponin I specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Plant Physiol. 125: 990–1000.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Segura, M.J.R., Meyer, M.M. and Matsuda, S.P.T. 2000. Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol. Org. Letts. 2: 2257–2259.

    Google Scholar 

  • Shibuya, M., Zhang, H., Endo, A., Shishikura, K., Kushiro, T. and Ebizuka, Y. 1999. Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur. J. Biochem. 266: 302–307.

    Google Scholar 

  • Stougard, J. 2001. Genetics and genomics of root symbiosis. Curr. Opin. Plant Biology 4: 328–335.

    Google Scholar 

  • Threlfall, D. and Whitehead, I.M. 1990. Redirection of terpenoid biosynthesis in elicitor-treated plant cell suspension cultures. In: Plant Lipid Biochemistry (P.J. Quinn and J.L. Harwood, eds.,), Portland Press, London, pp. 344–346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iturbe-Ormaetxe, I., Haralampidis, K., Papadopoulou, K. et al. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus . Plant Mol Biol 51, 731–743 (2003). https://doi.org/10.1023/A:1022519709298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022519709298

Navigation