Skip to main content
Log in

The large numbers hypothesis and quantum mechanics

  • Published:
Foundations of Physics Letters

Abstract

In this paper, the suggested similarity between micro and macrocosmos is extended to quantum behavior, postulating that quantum mechanics, like general relativity and classical electrodynamics, is invariant under discrete scale transformations. This hypothesis leads to a large scale quantization of angular momenta. Using the scale factor Λ ~ 1038, the corresponding quantum of action, obtained by scaling the Planck constant, is close to the Kerr limit for the spin of the universe - when this is considered as a huge rotating black hole - and to the spin of Gödel’s universe, solution of Einstein equations of gravitation. Besides, we suggest the existence of another, intermediate, scale invariance, with scale factor λ ~ 1019. With this factor we obtain, from Fermi’s scale, the values for the gravitational radius and for the collapse proper time of a typical black hole, besides the Kerr limit value for its spin. It is shown that the mass-spin relations implied by the two referred scale transformations are in accordance with Muradian’s Regge-like relations for galaxy clusters and stars. Impressive results are derived when we use a λ-scaled quantum approach to calculate the mean radii of planetary orbits in solar system. Finally, a possible explanation for the observed quantization of galactic redshifts is suggested, based on the large scale quantization conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. A. M. Dirac,Nature 139 (1937) 323.

    Article  ADS  MATH  Google Scholar 

  2. A. Salam and J. Strathdee,Phys. Rev. D 16 (1977) 2668;18 (1978) 4596.

    Article  ADS  Google Scholar 

  3. P. Caldirola, M. Pavisic, and E. Recami,Nuovo Cimento 48B (1978) 205.

    ADS  Google Scholar 

  4. C. Sivaram and K. P. Sinha,Phys. Rep.51 (1979) 111.

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Recami et al,Micro-Universes and Strong Black-Holes, inGravitation: The Space-Time Structure (Proceedings of Silarg- VIII), W.A. Rodrigues et al., eds. (World Scientific, Singapore, 1994), p. 355, and references therein.

    Google Scholar 

  6. Y. Ne’eman and D. Sijacki,Phys. Lett. B 276 (1992) 173.

    Article  ADS  Google Scholar 

  7. K. Gödel,Rev. Mod. Phys.21 (1949) 447.

    Article  ADS  MATH  Google Scholar 

  8. M. Surdin,Phys.Essays 8 (1995) 282.

    Article  ADS  Google Scholar 

  9. R. Muradian,Astrophys. Space Sci.69 (1980) 339.

    Article  ADS  Google Scholar 

  10. A. Kogut, G. Hinshaw, and A. J. Banday,Phys. Rev. D 55 (1997) 1901.

    Article  ADS  Google Scholar 

  11. B. Nodland and J. P. Ralston,Phys. Rev. Lett.78 (1997) 3043.

    Article  ADS  Google Scholar 

  12. Y. N. Obukhov, V. A. Korotky, and F. W. Hehl,astro-ph/9705243.

  13. R. W. Kuhne,astro-ph/9708109.

  14. M. OliveiraNeto,Ciencia e Cultura 48 (1996) 166.

    Google Scholar 

  15. A. G. Agnese and R. Festa,Phys. Lett. A 227 (1997) 165.

    Article  ADS  Google Scholar 

  16. W. G. Tifft and W. J. Cocke,Astroph. J.287 (1984) 492;336 (1989) 128.

    Article  ADS  Google Scholar 

  17. B. N. G. Guthrie and W. M. Napier,Mon. Not. R. Astr. Soc.243 (1990) 431;253 (1991) 533.

    ADS  Google Scholar 

  18. T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay,Nature 343 (1990) 726.

    Article  ADS  Google Scholar 

  19. M. J. Geller and J. P. Huchra,Science 246 (1989) 897.

    Article  ADS  Google Scholar 

  20. K. G. Karlsson,Astron. Astrophys.58 (1977) 237.

    ADS  Google Scholar 

  21. H. Arp, H. G. Bi, Y. Chu, and X. Zhu,Astr. Astrophys.239 (1990) 33.

    ADS  Google Scholar 

  22. M. Morikawa,Astrophys. J. Lett.362 (1990) L37;Astrophys. J.369 (1991) 20.

    Article  ADS  Google Scholar 

  23. C. T. Hill, P. J. Steinhardt, and M. S. Turner,Phys. Lett. B 252 (1990) 343.

    Article  ADS  Google Scholar 

  24. L. Nottale,Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity (World Scientific, Singapore, 1993), pp. 311–321.

    MATH  Google Scholar 

  25. J. Laskar,Nature 338 (1989) 237.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carneiro, S. The large numbers hypothesis and quantum mechanics. Found Phys Lett 11, 95–102 (1998). https://doi.org/10.1023/A:1022411021285

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022411021285

Key words

Navigation