Skip to main content
Log in

White Matter Injury Following Systemic Endotoxemia or Asphyxia in the Fetal Sheep

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Fujimoto, S., Yamaguchi, N., Togari, H., Wada, Y., and Yokochi, K. 1994. Cerebral palsy of cystic periventricular leukomalacia in low-birth-weight infants. Acta Paediatr. 83:397–401.

    PubMed  Google Scholar 

  2. Volpe, J. J. 1998. Brain injury in the premature infant: Overview of clinical aspects, neuropathology, and pathogenesis. Semin. Pediatr. Neurol. 5:135–151.

    PubMed  Google Scholar 

  3. Banker, B. Q. and Larroche, J.-C. 1962. Periventricular leukomalacia of infancy: A form of neonatal anoxic encephalopathy. Arch. Neurol. 7:386–410.

    PubMed  Google Scholar 

  4. Takashima, S. and Tanaka, K. 1978. Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch. Neurol. 35:11–16.

    PubMed  Google Scholar 

  5. De Reuck, J. L. 1984. Cerebral angioarchitecture and perinatal brain lesions in premature and full-term infants. Acta Neurol. Scand. 70:391–395.

    PubMed  Google Scholar 

  6. Back, S. A., Luo, N. L., Borenstein, N. S., Levine, J. M., Volpe, J. J., and Kinney, H. C. 2001. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J. Neurosci. 21:1302–1312.

    PubMed  Google Scholar 

  7. Dammann, O. and Leviton, A. 1998. Infection remote from the brain, neonatal white matter damage, and cerebral palsy in the preterm infant. Semin. Pediatr. Neurol. 5:190–201.

    PubMed  Google Scholar 

  8. Leviton, A. 1993. Preterm birth and cerebral palsy: Is tumor necrosis factor the missing link? Dev. Med. Child Neurol. 35:553–558.

    PubMed  Google Scholar 

  9. Deguchi, K., Oguchi, K., and Takashima, S. 1997. Characteristic neuropathology of leukomalacia in extremely low birth weight infants. Pediatr. Neurol. 16:296–300.

    PubMed  Google Scholar 

  10. Nelson, K. B., Dambrosia, J. M., Grether, J. K., and Phillips, T. M. 1998. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann. Neurol. 44:665–675.

    PubMed  Google Scholar 

  11. Reddy, K., Mallard, C., Guan, J., Marks, K., Bennet, L., Gunning, M., Gunn, A., Gluckman, P., and Williams, C. 1998. Maturational change in the cortical response to hypoperfusion injury in the fetal sheep. Pediatr. Res. 43:674–682.

    PubMed  Google Scholar 

  12. Gilles, F. H., Averill, D. R., Jr., and Kerr, C. S. 1977. Neonatal endotoxin encephalopathy. Ann. Neurol. 2:49–56.

    PubMed  Google Scholar 

  13. Young, R. S., Yagel, S. K., and Towfighi, J. 1983. Systemic and neuropathologic effects of E. coli endotoxin in neonatal dogs. Pediatr. Res. 17:349–353.

    PubMed  Google Scholar 

  14. Yoon, B. H., Kim, C. J., Romero, R., Jun, J. K., Park, K. H., Choi, S. T., and Chi, J. G. 1997. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am. J. Obstet. Gynecol. 177:797–802.

    PubMed  Google Scholar 

  15. Debillon, T., Gras-Leguen, C., Verielle, V., Winer, N., Caillon, J., Roze, J. C., and Gressens, P. 2000. Intrauterine infection induces programmed cell death in rabbit periventricular white matter. Pediatr. Res. 47:736–742.

    PubMed  Google Scholar 

  16. Mallard, E. C., Gunn, A. J., Williams, C. E., Johnston, B. M., and Gluckman, P. D. 1992. Transient umbilical cord occlusion causes hippocampal damage in the fetal sheep. Am. J. Obstet. Gynecol. 167:1423–1430.

    PubMed  Google Scholar 

  17. Mallard, E. C., Williams, C. E., Gunn, A. J., Gunning, M. I., and Gluckman, P. D. 1993. Frequent episodes of brief ischemia sensitize the fetal sheep brain to neuronal loss and induce striatal injury. Pediatr. Res. 33:61–65.

    PubMed  Google Scholar 

  18. Gilland, E., Bona, E., and Hagberg, H. 1998. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J. Cereb. Blood Flow Metab. 18:222–228.

    PubMed  Google Scholar 

  19. Braun, P. E., Sandillon, F., Edwards, A., Matthieu, J. M., and Privat, A. 1988. Immunocytochemical localization by electron microscopy of 2′3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci. 8:3057–3066.

    PubMed  Google Scholar 

  20. Paneth, N., Rudelli, R., Monte, W., Rodriguez, E., Pinto, J., Kairam, R., and Kazam, E. 1990. White matter necrosis in very low birth weight infants: Neuropathologic and ultrasonographic findings in infants surviving six days or longer. J. Pediatr. 116:975–984.

    PubMed  Google Scholar 

  21. Duggan, P. J., Maalouf, E. F., Watts, T. L., Sullivan, M. H., Counsell, S. J., Allsop, J., Al-Nakib, L., Rutherford, M. A., Battin, M., Roberts, I., and Edwards, A. D. 2001. Intrauterine T-cell activation and increased proinflammatory cytokine concentrations in preterm infants with cerebral lesions. Lancet 358:1699–1700.

    PubMed  Google Scholar 

  22. Chamnanvanakij, S., Margraf, L. R., Burns, D., and Perlman, J. M. 2002. Apoptosis and white matter injury in preterm infants. Pediatr. Dev. Pathol. 5:184–189.

    PubMed  Google Scholar 

  23. Volpe, J. J. 2001. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50:553–562.

    PubMed  Google Scholar 

  24. Rees, S., Stringer, M., Just, Y., Hooper, S. B., and Harding, R. 1997. The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Brain Res. Dev. Brain Res. 103:103–118.

    PubMed  Google Scholar 

  25. Matsuda, T., Okuyama, K., Cho, K., Hoshi, N., Matsumoto, Y., Kobayashi, Y., and Fujimoto, S. 1999. Induction of antenatal periventricular leukomalacia by hemorrhagic hypotension in the chronically instrumented fetal sheep. Am. J. Obstet. Gynecol. 181:725–730.

    PubMed  Google Scholar 

  26. Mallard, E. C., Waldvogel, H. J., Williams, C. E., Faull, R. L., and Gluckman, P. D. 1995. Repeated asphyxia causes loss of striatal projection neurons in the fetal sheep brain. Neuroscience 65:827–836.

    PubMed  Google Scholar 

  27. De Haan, H. H., Gunn, A. J., Williams, C. E., and Gluckman, P. D. 1997. Brief repeated umbilical cord occlusions cause sustained cytotoxic cerebral edema and focal infarcts in near-term fetal lambs. Pediatr. Res. 41:96–104.

    PubMed  Google Scholar 

  28. Mayhan, W. G. 1998. Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: Role of inducible nitric oxide synthase. Brain Res. 792:353–357.

    PubMed  Google Scholar 

  29. Chao, C. C., Hu, S., and Peterson, P. K. 1995. Glia, cytokines, and neurotoxicity. Crit. Rev. Neurobiol. 9:189–205.

    PubMed  Google Scholar 

  30. Hagberg, H., Gilland, E., Bona, E., Hanson, L. A., Hahin-Zoric, M., Blennow, M., Holst, M., McRae, A., and Soder, O. 1996. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr. Res. 40:603–609.

    PubMed  Google Scholar 

  31. Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. 2000. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia. J. Neurosci. 20:6309–6316.

    PubMed  Google Scholar 

  32. Anthony, D. C., Bolton, S. J., Feam, S., and Perry, V. H. 1997. Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood-brain barrier permeability in rats. Brain 120:435–444.

    PubMed  Google Scholar 

  33. Inage, Y. W., Itoh, M., and Takashima, S. 2000. Correlation between cerebrovascular maturity and periventricular leukomalacia. Pediatr. Neurol. 22:204–208.

    PubMed  Google Scholar 

  34. Hardy, R. J. and Friedrich, V. L., Jr. 1996. Progressive remodeling of the oligodendrocyte process arbor during myelinogenesis. Dev. Neurosci. 18:243–254.

    PubMed  Google Scholar 

  35. Fern, R. and Moller, T. 2000. Rapid ischemic cell death in immature oligodendrocytes: A fatal glutamate release feedback loop. J. Neurosci. 20:34–42.

    PubMed  Google Scholar 

  36. Selmaj, K. W. and Raine, C. S. 1988. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann. Neurol. 23:339–346.

    PubMed  Google Scholar 

  37. Yonezawa, M., Back, S. A., Gan, X., Rosenberg, P. A., and Volpe, J. J. 1996. Cystine deprivation induces oligodendroglial death: Rescue by free radical scavengers and by a diffusible glial factor. J. Neurochem. 67:566–573.

    PubMed  Google Scholar 

  38. Follett, P. L., Rosenberg, P. A., Volpe, J. J., and Jensen, F. E. 2000. NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci. 20:9235–9241.

    PubMed  Google Scholar 

  39. Bennet, L., Rossenrode, S., Gunning, M. I., Gluckman, P. D., and Gunn, A. J. 1999. The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J. Physiol. 517:247–257.

    PubMed  Google Scholar 

  40. Young, R. S., Hernandez, M. J., and Yagel, S. K. 1982. Selective reduction of blood flow to white matter during hypotension in newborn dogs: A possible mechanism of periventricular leukomalacia. Ann. Neurol. 12:445–448.

    PubMed  Google Scholar 

  41. Ando, M., Takashima, S., and Mito, T. 1988. Endotoxin, cerebral blood flow, amino acids and brain damage in young rabbits. Brain Dev. 10:365–370.

    PubMed  Google Scholar 

  42. Quan, N., Whiteside, M., and Herkenham, M. 1998. Time course and localization patterns of interleukin-1 beta messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide. Neuroscience 83:281–293.

    PubMed  Google Scholar 

  43. van Dam, A. M., Poole, S., Schultzberg, M., Zavala, F., and Tilders, F. J. 1998. Effects of peripheral administration of LPS on the expression of immunoreactive interleukin-1 alpha, beta, and receptor antagonist in rat brain. Ann. N Y Acad. Sci. 840:128–138.

    PubMed  Google Scholar 

  44. Lacroix, S., Feinstein, D., and Rivest, S. 1998. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol. 8:625–640.

    PubMed  Google Scholar 

  45. Nadeau, S. and Rivest, S. 2000. Role of microglial-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor kappa B activity in the brain during endotoxemia. J. Neurosci. 20:3456–3468.

    PubMed  Google Scholar 

  46. Eklind, S., Mallard, C., Leverin, A. L., Gilland, E., Blomgren, K., Mattsby-Baltzer, I., and Hagberg, H. 2001. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur. J. Neurosci. 13:1101–1106.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carina Mallard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallard, C., Welin, AK., Peebles, D. et al. White Matter Injury Following Systemic Endotoxemia or Asphyxia in the Fetal Sheep. Neurochem Res 28, 215–223 (2003). https://doi.org/10.1023/A:1022368915400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022368915400

Navigation