Skip to main content
Log in

Moment Differential Equations for Flow in Highly Heterogeneous Porous Media

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Quantitative descriptions of flow and transport in subsurface environmentsare often hampered by uncertainty in the input parameters. Treatingsuch parameters as random fields represents a useful tool for dealingwith uncertainty. We review the state of the art of stochasticdescription of hydrogeology with an emphasis on statisticallyinhomogeneous (nonstationary) models. Our focus is on composite mediamodels that allow one to estimate uncertainties both in geometricalstructure of geological media consisting of various materials and inphysical properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, E.E. and Gelhar, L.W.: 1992, Field study of dispersion in a heterogeneous aquifer, 2. Spatial moment analysis, Water Resour. Res. 28(12), 3293–3308.

    Google Scholar 

  • Baker, A.A., Gelhar, L.W., Gutjahr, A.L., and MacMillan, J.R.: 1978, Stochastic analysis of spatial variability in subsurface flows, 1. Comparison of one-dimensional and three-dimensional flows, Water Resour. Res. 14(2), 263–271.

    Google Scholar 

  • Batchelor, G.K.: 1974, Transport properties of two-phase materials with random structure, Ann. Rev. Fluid Mech. 6, 227–255.

    Google Scholar 

  • Begg, S.H., Chang, D.M., and Haldorsen, H.H.: 1985, A simple statistical method of calculating the effective vertical permeability of a reservoir containing discontinuous shales, in 60th Ann. Tech. Conf., Soc. Pet. Eng., Las Vegas.

  • Begg, S.H. and King, P.R.: 1985, Modeling of the effects of shales on reservoir performance: Calculation of effective vertical permeability, in 8th Symp. On Reservoir Simulation, Soc. Pet. Eng., Dallas.

  • Bi, Z., Oliver, D.S., and Reynolds, C.: 1999, Conditioning 3D stochastic channels to pressure data, in SPE Annual Technical Conference and Exhibition (SPE Pap. 56682).

  • Boggs, J.M. and Adams, E.E.: 1992, Field study of dispersion in a heterogeneous aquifer, 4. Investigation of absorption and sampling bias, Water Resour. Res. 28(12), 3325–3336.

    Google Scholar 

  • Boggs, J.M., Young, S.C., Beard, L.M., Gelhar, L.W., Rehfeldt, R., and Adams, E.E.: 1992, Field study of dispersion in a heterogeneous aquifer, 1. Overview and site description, Water Resour. Res. 28(12), 3281–3291.

    Google Scholar 

  • Butler, D.K.: 1991, Tutorial-engineering and environmental applications of microgravity, in Proc. of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, Knoxville, TN, pp. 139–177.

  • Crawford, C.A.G. and Hergert, G.W.: 1997, Incorporating spatial trends and anisotropy in geostatistical mapping of soil properties, Soil Sci. Soc. Am. J. 61(1), 298–309.

    Google Scholar 

  • Crone, E.E. and Gehring, J.L.: 1998, Population viability of Rorippa columbiae: Multiple models and spatial trend data, Conservation Biology 12(5), 1054–1065.

    Google Scholar 

  • Cushman, J,: 1997, The Physics of Fluids in Hierarchical Porous Media: Angstroms toMiles, Kluwer Academic Publishers, New York.

    Google Scholar 

  • Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer-Verlag, New York.

    Google Scholar 

  • Dagan, G. and Neuman, S.P. (ed.): 1997, Subsurface Flow and Transport: A Stochastic Approach, Cambridge, New York.

  • Davis, J. and Annan, A.: 1989, Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy, Geophys. Prospecting 37, 531–555.

    Google Scholar 

  • Davis, J.M., Lohmann, R.C., Phillips, F.M., Wilson, J.L., and Love, D.W.: 1993, Architecture of the Sierra Ladrones formation, central New Mexico: Depositional controls in the permeability correlation structure, Geol. Soc. Am. Bull. 105, 998–1007.

    Google Scholar 

  • de Marsily, G.: 1986, Quantitative Hydrogeology, Academic Press, New York.

    Google Scholar 

  • Debarats, A.J.: 1987, Numerical estimation of effective permeability in sand-shale formations, Water Resour. Res. 23(2), 273–286.

    Google Scholar 

  • Desbarats, A.J.: 1990, Macrodispersion in sand-shale sequences, Water Resour. Res. 26(1), 153–163.

    Google Scholar 

  • Di Federico, V., Neuman, S.P., and Tartakovsky, D.M.: 1999, Anisotropy, lacunarity, upscaled conductivity, and its covariance in multiscale random fields with truncated power variograms, Water Resour. Res. 35(10), 2891–2908.

    Google Scholar 

  • Eggleston, J. and Rojstaczer, S.: 1998, Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resour. Res. 34(9), 2155–2168.

    Google Scholar 

  • Fiori, A., Indelman, P., and Dagan, G.: 1998, Correlation structure of flow variables for steady flow toward a well with application to highly anisotropic heterogeneous formations, Water Resour. Res. 34(4), 699–708.

    Google Scholar 

  • Fisher, A.T., Barnhill, M., and Revenaugh, J.: 1998, The relationship between hydrogeologic properties and sedimentary facies: An example from Pennsylvanian bedrock aquifers, southwestern Indians, Groundwater 36(6), 901–912.

    Google Scholar 

  • Flint, S., Knight, S., and Tilbrook, A.: 1998, Application of high-resolution sequence stratigraphy to Northwest Hutton Field, northern North Sea: Implications for management of a mature Brent Group Field, Am. Assoc. Pet. Geol. Bull. 82(7), 1416–1436.

    Google Scholar 

  • Fontes, L.R.G., Isopi, M., and Newman, C.M.: 1999, Chaotic time dependence in a disordered spin system, Probability Theory Related Fields 115(3), 417–443.

    Google Scholar 

  • Freeze, R.A.: 1975, Stochastic-conceptual analysis of one-dimensional flow in nonuniform homogeneous media, Water Resour. Res. 11(5), 725–741.

    Google Scholar 

  • Frischknecht, F.C., Labson, V.F., Speis, B.R., and Anderson, W.L.: 1991, Profiling methods using small sources, in M. Nabighian (ed.), Electromagnetic Methods in Applied Geophysics, Vol. 2, S.E.G. Investigation in Geophysics 3, pp. 105–207.

  • Gelhar, L.W.: 1986, Stochastic subsurface hydrology from theory to applications, Water Resour. Res. 22(9), S135-S145.

    Google Scholar 

  • Gelhar, L.W.: 1993, Stochastic Subsurface Hydrology, Prentice Hall, New Jersey.

    Google Scholar 

  • Gelhar, L.W. and Axness, C.L.: 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19(1), 161–180.

    Google Scholar 

  • Gelhar, L.W., Gutjahr, A.L., and Naff, R.L.: 1979, Stochastic analysis of macrodispersion in a stratified aquifer, Water Resour. Res. 15(6), 1387–1397.

    Google Scholar 

  • Haldorsen, H.H. and Lake, L.W.: 1982, A new approach to shale management in field scale simulation models, in 57th Ann. Tech. Conf., Soc. Pet. Eng., New Orleans.

  • Hess, K.M., Wolf, S.H., and Celia, M.A.: 1992, Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 3. Hydraulic conductivity variability and calculated macrodispersivities, Water Resour. Res. 28(8), 2011–2027.

    Google Scholar 

  • Hinze,W.K.: 1990, The role of gravity and magnetic methods in engineering and environmental studies, in S. Ward (ed.), Geotechnical and Environmental Geophysics, Vol. 1: Review and Tutorial, S.E.G. Investigations in Geophysics 5, pp. 75–126.

  • Hoekstra, P. and Bohm, M.: 1990, Case histories of time-domain electromagnetic soundings in environmental geophysics, in S. Ward (ed.), Geotechnical and Environmental Geophysics, Vol. 2: Environmental and Groundwater, S.E.G. Investigations in Geophysics 5, pp. 1–17.

  • Hyndman, D.W. and Gorelick, S.M.: 1996, Estimating lithologic and transport properties in three dimensions using seismic and tracer data, Water Resour. Res. 32(9), 2659–2670.

    Google Scholar 

  • Hyndman, D.W., Harris, J.M., and Gorelick, S.M.: 1994, Coupled seismic and tracer test inversion for aquifer property characterization, Water Resour. Res. 30(7), 1965–1977.

    Google Scholar 

  • Indelman, P., Fiori, A., and Dagan, G.: 1996, Steady flow toward wells in heterogeneous formations: Mean head and equivalent conductivity, Water Resour. Res. 32(7), 1975–1983.

    Google Scholar 

  • Indelman, P. and Rubin, Y.: 1995a, Flow in heterogeneous media displaying a linear trend in the log conductivity, Water Resour. Res. 31(5), 1257–1265.

    Google Scholar 

  • Indelman, P. and Rubin, Y.: 1995b, Flow in heterogeneous media of trending hydraulic conductivity, J. Hydrology 183(1–2), 57–68.

    Google Scholar 

  • Johnson, N.M.: 1995, Characterization of alluvial hydrostratigraphy with indicator semivariograms, Water Resour. Res. 31(12), 3217–3227.

    Google Scholar 

  • Johnson, N.M. and Dreiss, S.J.: 1989, Hydrostratigraphic interpretation using indicator geostatistics, Water. Resour. Res. 35(12), 2501–2510.

    Google Scholar 

  • Journel, A.G.: 1983, Non parametric estimation of spatial distributions, Math. Geol. 15(3), 445–468.

    Google Scholar 

  • Jussel, P., Stauffer, F., and Dracos, T.: 1994a, Transport modeling in heterogeneous aquifers, 1. Statistical description and numerical generation of gravel deposits, Water Resour. Res. 30(6), 1803–1817.

    Google Scholar 

  • Jussel, P., Stauffer, F., and Dracos, T.: 1994b, Transport modeling in heterogeneous aquifers, 2. Three-dimensional transport model and stochastic numerical tracer experiments, Water Resour. Res. 30(6), 1819–1831.

    Google Scholar 

  • Keys, S.W.: 1989, Borehole Geophysics Applied to Ground-Water Investigations, National Water Well Association, Dublin, OH.

    Google Scholar 

  • Kohler, W.E. and Papanicolaou, G.C.: 1981, Some applications of the coherent potential approximation, in P.L. Chow, W.E. Kohler, and G.C. Papanicolaou (eds.), Multiple Scattering and Waves in Random Media, North-Holland, Amsterdam.

    Google Scholar 

  • Koltermann, C.E. and Gorelick, S.M.: 1996, Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res. 32(9), 2617–2658.

    Google Scholar 

  • Langsholt, E., Kitterod, N.-O., and Gottschalk, L.: 1996, Development of three-dimensional hydrostratigraphical architecture of the unsaturated zone based on soft and hard data, Groundwater 36(1), 104–111.

    Google Scholar 

  • Levermore, C.D., Pomraning, G.C., Sanzo, D.L., and Wong, J.: 1986, Linear transport theory in a random medium, J. Math. Phys. 27(10), 2526–2536.

    Google Scholar 

  • Li, S.G. and McLaughlin, D.: 1991, A nonstationary spectral method for solving stochastic groundwater problems: Unconditional analysis, Water Resour. Res. 27(7), 1589–1605.

    Google Scholar 

  • Li, S.G. and McLaughlin, D.: 1995, Using the nonstationary spectral method to analyze flow through heterogeneous porous media, Water Resour. Res. 31(3), 541–551.

    Google Scholar 

  • Loaiciga, H.A., Leipnik, R.B., Mariño, M.A., and Hudak, P.: 1983, Stochastic groundwater flow analysis in the presence of trends in heterogeneous hydraulic conductivity fields, Math. Geol. 25(2), 161–176.

    Google Scholar 

  • Mast, R.F. and Potter, P.E.: 1963, Sedimentary structures, sand shapes and permeability, J. Geol. 71, 548–565.

    Google Scholar 

  • Matheron, G.: 1967, Composition de perméabilité en milieu poreux hétérogène: Méthode de Schwydler règles de pondération, Revue de l'IFP (Rev. Inst. Fr. Pet.) 22, 443–466.

    Google Scholar 

  • Matheron, G. and de Marsily, G.: 1980, Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16(5), 901–917.

    Google Scholar 

  • McLaughlin, D. and Townley, L.R.: 1996, A reassessment of the groundwater inverse problem, Water Resour. Res. 32(5), 1131–1162.

    Google Scholar 

  • McLaughlin, D. and Wood, E.F.: 1988, A distributed parameter approach for evaluating the accuracy of groundwater model predictions, 1. Theory, Water Resour. Res. 24(7), 1037–1047.

    Google Scholar 

  • Miller, R.B., Castle, J.W., and Temples, T.J.: 2000, Deterministic and stochastic modeling of aquifer stratigraphy, South Carolina, Groundwater 38(2), 284–295.

    Google Scholar 

  • Mizell, S.A., Gutjahr, A.L., and Gelhar, L.W.: 1982, Stochastic analysis of spatial variability in two-dimensional steady groundwater flow assuming stationary and nonstationary fields, Water Resour. Res. 18(4), 1053–1067.

    Google Scholar 

  • Mungiole, M., Pickle, L.W., and Simonson, K.H.: 1999, Application of a weighted head-banging algorithm to mortality data maps, Statistics in Medicine 18(23), 3201.

    Google Scholar 

  • Naff, R.L. and Vecchia, A.V.: 1986, Stochastic analysis of 3-dimensional flow in a bounded domain, Water Resour. Res. 22(5), 695–704.

    Google Scholar 

  • Neuman, S.P.: 1994, Generalized scaling of permeabilities: Validation and effect of support scale, Geophys. Res. Lett. 21(5), 349–352.

    Google Scholar 

  • Neuman, S.P. and Jacobsen, E.A.: 1984, Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels, Math. Geol. 16(5), 499–521.

    Google Scholar 

  • Neuman, S.P. and Orr, S.: 1993, Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact nonlocal formalism, effective conductivities, and weak approximation, Water Resour. Res. 29(2), 341–364.

    Google Scholar 

  • Rauber, M., Stauffer, F., Huggenberger, P., and Dracos, T.: 1998, A numerical three-dimensional conditioned/unconditioned stochastic facies type model applied to a remediation well system, Water Resour. Res. 34(9), 2225–2233.

    Google Scholar 

  • Rehfeldt, K.R., Boggs, J.M., and Gelhar, L.W.: 1992, Field study of dispersion in a heterogeneous aquifer, 3. Geostatistical analysis of hydraulic conductivity, Water Resour. Res. 28(12), 3309–3324.

    Google Scholar 

  • Ritzi, R.W., Dominic, D.F., Brown, N.R., Kausch, K.W., McAlenne, P.J., and Basial, M.J.: 1995, Hydrofacies distribution and correlation in the Miami valley aquifer system, Water Resour. Res. 31(12), 3271–3281.

    Google Scholar 

  • Ritzi, R.W., Dominic, D.F., and Kausch, K.W.: 1996, Aquitard distribution in a northern reach of the Miami Valley Aquifer, Ohio, USA: 1. Three-dimensional geostatistical evaluation of physical heterogeneity, Hydrogeol. J. 4(2), 12–24.

    Google Scholar 

  • Ritzi, R.W., Jayne, D.F., A.J.Z. Jr., Field, A.A., and Fogg, G.E.: 1994, Geostatistical modeling of heterogeneity in glaciofluvial, buried-valley aquifer, Groundwater 32(4), 666–674.

    Google Scholar 

  • Rubin, Y.: 1995, Flow and transport in bimodal heterogeneous formations, Water Resour. Res. 31(10), 2461–2468.

    Google Scholar 

  • Rubin, Y. and Dagan, G.: 1988, Stochastic analysis of boundary effects on head spatial variability in heterogeneous aquifers, 1. Constant head boundary, Water Resour. Res. 24(1), 1689–1697.

    Google Scholar 

  • Rubin, Y., Hubbard S.S., Wilson, A., and Cushey, M.A.: 1999, Aquifer characterization, in J.W. Delleur (ed.), The Handbook of Groundwater Engineering, Chap. 10, CRC Press LLC, New York, pp. 10–1–10–68.

    Google Scholar 

  • Rubin, Y. and Journel, A.G.: 1991, Simulation of non-Gaussian space random functions for modeling transport in groundwater, Water Resour. Res. 27(7), 1711–1721.

    Google Scholar 

  • Rubin, Y. and Seong, K.: 1994, Investigation of flow and transport in certain cases of nonstationary conductivity fields, Water Resour. Res. 30(11), 2901–2911.

    Google Scholar 

  • Russo, D. and Jury, W.A.: 1987, A theoretical study of the estimation of the correlation length scale is spatially variable fields, 2. Nonstationary fields, Water Resour. Res. 23(7), 1269–1279.

    Google Scholar 

  • Salandin, A., Rinaldo, A., and Dagan, G.: 1991, A note on transport in stratified formations by flow tilted with respect to bedding, Water Resour. Res. 27(11), 3009–3017.

    Google Scholar 

  • Scheibe, T.D. and Freyberg, D.L.: 1995, Use of sedimentological information for geometric simulation of natural porous media structure, Water Resour. Res. 31(12), 3259–3270.

    Google Scholar 

  • Scheibe, T.D. and Murray, C.J.: 1998, Simulation of geologic patterns: A comparison of stochastic simulation techniques for groundwater transport modeling, in G.S. Fraser and J.M. Davis (eds.), Hydrogeologic Models of Sedimentary Aquifers, Vol. 1 of Concepts in Hydrogeology and Environmental Geology, SEPM (Society for Sedimentary Geological), pp. 107–118.

  • Seong, K. and Rubin, Y.: 1999, Field investigation of the Waste Isolation Pilot Plant (WIPP) site (New Mexico) using a nonstationary stochastic model with a trending hydraulic conductivity field, Water Resour. Res. 35(4), 1011–1018.

    Google Scholar 

  • Shvidler, M.I.: 1962, Flow in heterogeneous media, Izv. Akad. Nauk SSSR, Mech. Zhidk. Gaza 3, 185–188.

    Google Scholar 

  • Shvidler, M.I.: 1964, Filtration Flows in Heterogeneous Media; a Statistical Approach, Consultants Bureau, New York.

    Google Scholar 

  • Shvidler, M.I.: 1986, Conditional averaging of unsteady percolation fields in random composite porous media, Fluid Dynamics 21(5), 735–740.

    Google Scholar 

  • Shvidler, M.I.: 1988, Multicontinuum description of percolating flow through periodic inhomogeneous porous media, Fluid Dynamics 23(6), 894–901.

    Google Scholar 

  • Stroup, W.W., Baenziger, P.S., and Mulitze, D.K.: 1994, Removing spatial variation from wheat yields trials: A comparison of methods, Crop Sci. 34(1), 62–66.

    Google Scholar 

  • Sudicky, E.A.: 1986, A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resour. Res. 22(13), 2069–2082.

    Google Scholar 

  • Tartakovsky, D.M. and Neuman, S.P.: 1998, Transient flow in bounded randomly heterogeneous domains 1. Exact conditional moment equations and recursive approximations, Water Resour. Res. 34(1), 1–12.

    Google Scholar 

  • Tartakovsky, D.M. and Neuman, S.P.: 1999, Extension of “Transient flow in bounded randomly heterogeneous domains 1. Exact conditional moment equations and recursive approximations”, Water Resour. Res. 35(6), 1921–1925.

    Google Scholar 

  • Van Nostrand, R.G. and Cook, K.L.: 1966, Interpretation of Resistivity Data, U.S. Geological Survey Professional Paper, PO499.

  • Ward, S.: 1990, Geotechnical and environmental geophysics, in S. Ward (ed.), Geotechnical and Environmental Geophysics, Vol. 2: Environmental and Groundwater, S.E.G. Investigations in Geophysics 5.

  • Warren, J.E. and Price, H.S.: 1961, Flow in heterogeneous porous media, SPE J. 1, 153–169.

    Google Scholar 

  • Webb, E.K.: 1995, Simulation of braided channel topology and topography, Water Resour. Res. 31(10), 2603–2611.

    Google Scholar 

  • Webb, E.K. and Anderson, M.P.: 1996, Simulation of preferential flow in three-dimensional heterogeneous conductivity fields with realistic internal architecture, Water Resour. Res. 32(3), 533–545.

    Google Scholar 

  • White, C.D. and Willis, B.J.: 2000, A method to estimate length distributions from outcrop data, Math. Geol. 32(4), 389–419.

    Google Scholar 

  • Winter, C.L. and Tartakovsky, D.M.: 2000, Mean flow in composite porous media, Geophys. Res. Lett. 28(23), 4367–4370.

    Google Scholar 

  • Winter, C.L. and Tartakovsky, D.M.: 2001, Theoretical foundation for conductivity scaling, Geophys. Res. Lett. 28(23), 4367–4370.

    Google Scholar 

  • Winter, C.L. and Tartakovsky, D.M.: 2002, Groundwater flow in heterogeneous composite aquifers, Water Resour. Res. 38(8), 23.1–23.11.

    Google Scholar 

  • Winter, C.L., Tartakovsky, D.M., and Guadagnini, A.: 2002, Numerical solutions of moment equations for flow in heterogeneous composite aquifers, Water Resour. Res. 38(5), 13.1–13.8.

    Google Scholar 

  • Yaglom, A.M.: 1987, Correlation Theory of Stationary and Related Random Functions. I. Basic Results, Springer-Verlag, New York.

    Google Scholar 

  • Zhang, D.: 1998, Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media, Water Resour. Res. 34(3), 529–538.

    Google Scholar 

  • Zhang, D. and Sun, A.Y.: 2000, Stochastic analysis of transient saturated flow through heterogeneous fractured porous media: A double permeability approach, Water Resour. Res. 36(4), 865–874.

    Google Scholar 

  • Zhang, Z. and Brusseau, M.L.: 1998, Characterizing three-dimensional hydraulic conductivity distributions using qualitative and quantitive geologic borehold data: Application to a field site, Groundwater 36(4), 671–678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, C., Tartakovsky, D. & Guadagnini, A. Moment Differential Equations for Flow in Highly Heterogeneous Porous Media. Surveys in Geophysics 24, 81–106 (2003). https://doi.org/10.1023/A:1022277418570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022277418570

Navigation