Skip to main content
Log in

Small Ball Constants and Tight Eigenvalue Asymptotics for Fractional Brownian Motions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper we prove rigorous large n asymptotics for the Karhunen–Loeve eigenvalues of a fractional Brownian motion. From the asymptotics of the eigenvalues the exact constants for small L 2 ball estimates for fractional Brownian motions follows in a straightforward way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ahlfors, L. V. (1979). Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3d edn., McGraw-Hill, New York.

    Google Scholar 

  2. Ash, R. B., and Gardner, M. F. (1975). Topics in Stochastic Processes, Academic Press, New York.

    Google Scholar 

  3. Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1987). Regular Variation, Cambridge University Press, Cambridge.

    Google Scholar 

  4. Bronski, J. C. Asymptotics of Karhunen-Loeve Eigenvalues and Tight Constants for Probability Distributions of Passive Scalar Transport, in preparation.

  5. Rubel, L. with Colliander, J. (1996). Entire and Meromorphic Functions, Springer, New York.

    Google Scholar 

  6. Kuelbs, J., Li, W. V., and Shao, Q. M. (1995). Small ball probabilities for Gaussian processes with stationary increments under Hölder norms. J. Theoret. Probab. 8, 361–386.

    Google Scholar 

  7. Li, W. V., and Linde, W. (1998). C. R. Acad. Sci. Paris Sér. I Math. 326, 1329–1334.

    Google Scholar 

  8. Li, W. V., and Shao, Q. M. (1999). Small ball estimates for Gaussian processes under Sobolev type norms. J. Theoret. Probab. 12, 699–720.

    Google Scholar 

  9. Li, W. V., and Shao, Q. M. To appear in Stochastic Processes: Theory and Methods, Handbook of Statistics, Vol. 19.

  10. Li, W. V., Personal Communications.

  11. Majda, A. J. (1993). The random uniform shear layer: An explicit example of turbulent diffusion with broad tail probability distributions. Phys. Fluids A 5, 1963–1970.

    Google Scholar 

  12. Mandelbrot, B. B., and Van Ness, J. W. (1968). Fractional brownian motions, fractional noises, and applications. SIAM Rev. 10, 422–437.

    Google Scholar 

  13. Molchan, G. M. (1999). Maximum of a fractional brownian motion: Probabilities of small values. Comm. Math. Phys. 205, 97–111.

    Google Scholar 

  14. Porter, D., and Stirling, D. S. G. (1990). Integral Equations, Cambridge University Press, Cambridge.

    Google Scholar 

  15. Titchmarsh, E. C. (1932). The Theory of Functions, 2nd edn., The Clarendon Press, Oxford.

    Google Scholar 

  16. Vanden Eijnden, E. (2001). Non-Gaussian invariant measures for the Majda model of decaying turbulent transport. Comm. Pure Appl. Math. 54, 1146–1167.

    Google Scholar 

  17. Wang, Y. (1997). Small Ball Problem via Wavelets for Gaussian Processes. Stat. Prob. Lett. 32, 133–139.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J.C. Small Ball Constants and Tight Eigenvalue Asymptotics for Fractional Brownian Motions. Journal of Theoretical Probability 16, 87–100 (2003). https://doi.org/10.1023/A:1022226420564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022226420564

Navigation