Skip to main content
Log in

Salmonid inbreeding: a review

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

We review the published literature oninbreeding and its consequences in salmonidfishes. Inbreeding reduces genetic variationwithin populations by decreasingheterozygosity, either through an increasedchance of sharing parental genes or a loss ofalleles from random genetic drift. Increasedinbreeding is often associated with a reductionin mean phenotypic value of one or more traitswith respect to fitness (inbreedingdepression). We identify several sources ofinbreeding in salmonids. Although inbreedingoccurs naturally, much of the evidence forinbreeding stems from direct or indirectresults of human activity. The potentialconsequences of inbreeding highlight theimportance of maintaining genetic diversity insalmonid populations. Our weak understandingof genetic interactions between cultured andwild salmonids has allowed widespread practicesthat can reduce genetic variability in naturalpopulations. Although studies have detectedinbreeding depression in salmonids, its geneticbasis has rarely been addressed in wild,anadromous salmon. The genetic basis ofinbreeding depression is complex, andevaluating its effects over the entire lifecycle remains challenging. The experimentalevidence nevertheless reinforces the importanceof maintaining genetic variation withinpopulations as a primary goal of conservationand management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F.W. and Leary, R.F. (1986) Heterozygosity and fitness in natural populations of animals. In: Soulé, M.E. (ed.), Conservation Biology: The Science of Scarcity and Diversity. Sunderland, Massachusetts, Sinauer Associates, Inc. Publishers, pp. 57-76.

    Google Scholar 

  • Allendorf, F.W. and Phelps, S.R. (1980) Loss of genetic variation in hatchery stock of cutthroat trout. Trans. Am. Fish. Soc. 109, 537-543.

    Google Scholar 

  • Allendorf, F.W. and Ryman, N. (1987) Genetic management of hatchery stocks. In: Ryman, N. and Utter, F. (eds.), Population Genetics and Fishery Management. Seattle, University of Washington Press, pp. 141-159.

    Google Scholar 

  • Allendorf, F.W. and Seeb, L.W. (2000) Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 54, 640-651.

    CAS  PubMed  Google Scholar 

  • Allendorf, F.W. and Thorgaard, G.H. (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner, B.J. (ed.), Evolutionary Genetics of Fishes. New York, Plenum, pp. 1-53.

    Google Scholar 

  • Allendorf, F.W and Utter, F.M. (1979) Population genetics. In: Hoar, W.S., Randall, D.J., and Brett, J.R. (eds.), Fish Physiology, Vol. VIII. New York, Academic Press, pp. 407-454.

    Google Scholar 

  • Allendorf, F.W. and Waples, R.S. (1996) Conservation and genetics of salmonid fishes. In: Avise, J.C. and Hamrick, J.L. (eds.), Conservation Genetics: Case Histories from Nature. New York, Chapman & Hall, pp. 238-501.

    Google Scholar 

  • Altukhov, Yu. P. (1995) Intraspecific genetic diversity: Monitoring and conservation. Genetika 31, 1333-1357.

    CAS  PubMed  Google Scholar 

  • Amos, W. and Balmford, A. (2001) When does conservation genetics matter? Heredity 87, 257-265.

    CAS  PubMed  Google Scholar 

  • Armbruster, P., Hutchinson, R.A. and Linvell, T. (2000) Equivalent inbreeding depression under laboratory and field conditions in a tree-hole-breeding mosquito. Proc. Roy. Soc. Lond. Biol. Sci., Ser. B 267, 1939-1945.

    CAS  Google Scholar 

  • Aulstad, D., Gjedrem, T. and Skjervold, H. (1972) Genetic and environmental sources of variation in length and weight of rainbow trout (Salmo gairdneri). J. Fish. Res. Board Can. 29, 237-241.

    Google Scholar 

  • Aulstad, D. and Kittlesen, A. (1971) Abnormal body curvatures of rainbow trout (Salmo gairdneri) inbred fry. J. Fish. Res. Board Can. 28, 1918-1920.

    Google Scholar 

  • Avise, J.C. (1994) Molecular Markers, Natural History and Evolution. New York, Chapman & Hall, 511 pp.

    Google Scholar 

  • Avise, J.C. and Hamrick, J.L. (eds.) (1996) Conservation and Genetics: Case Histories from Nature. New York, Chapman & Hall, 512 pp.

    Google Scholar 

  • Ballou, J.D. (1997) Ancestral inbreeding only minimally affects inbreeding depression in mammalian populations. J. Heredity 88, 169-178.

    CAS  Google Scholar 

  • Barrett, S.C.H. and Charlesworth, D. (1991) Effects of a change in the level of inbreeding on the genetic load. Nature (London) 352, 522-524.

    CAS  PubMed  Google Scholar 

  • Bateson, P. (1983) Optimal outbreeding. In: Bateson, P. (ed.), Mate Choice, Cambridge, Cambridge University Press, pp. 257-277.

    Google Scholar 

  • Bierne, N., Tsitrone, A. and David, P. (2000) An inbreeding model of associative overdominance during a population bottleneck. Genetics 155, 1981-1990.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bijlsma, R., Bundgaard, J. and Boerema, A.C. (2000) Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J. Evol. Biol. 13, 502-514.

    Google Scholar 

  • Bijlsma, R., Bundgaard, J. and Van Putten, W.F. (1999) Environmental dependence of inbreeding depression and purging in Drosophila melanogaster. J. Evol. Biol. 12, 1125-1137.

    Google Scholar 

  • Blanchfield, P.J. and Ridgway, M.S. (1998) The cost of peripheral males in a brook trout mating system. Anim. Behav. 57, 537-544.

    Google Scholar 

  • Burger, C.V., Spearman, W.J. and Cronin, M.A. (1997) Genetic differentiation of sockeye salmon subpopulations from a geologically young Alaskan lake system. Trans. Am. Fish. Soc. 126, 926-938.

    Google Scholar 

  • Busack, C.A., Halliburton, R. and Gall, G.A.E. (1979) Electrophoretic variation and differentiation in four strains of domesticated rainbow trout (Salmo Gairdneri). Can. J. Genet. Cytol. 21, 81-94.

    CAS  PubMed  Google Scholar 

  • Busack, C.A. and Currens, K.P. (1995) Genetic risks and hazards in hatchery operations: Fundamental concepts and issues. Am. Fish. Soc. Symp. 15, 71-80.

    Google Scholar 

  • Byers, D.L. and Waller, D.M. (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479-513.

    Google Scholar 

  • Caballero, A. (1994) Developments in the prediction of effective populations size. Heredity 73, 657-679.

    PubMed  Google Scholar 

  • Campton, D.E. (1995) Genetic effects of hatchery fish on wild populations of Pacific salmon and steelhead: What do we really know? Am. Fish. Soc. Symp. 15, 337-353.

    Google Scholar 

  • Campton, D.E. and Utter, F.M. (1987) Genetic structure of anadromous cutthroat trout (Salmo clarki clarki) populations in the Puget Sound area: Evidence for restricted gene flow. Can. J. Fish. Aquat. Sci. 44, 573-582.

    Google Scholar 

  • Campbell, R.B. (1995) The effect of mating structure and progeny distribution on heterozygosity versus the number of alleles as measures of variation. J. Theor. Biol. 175, 503-509.

    CAS  PubMed  Google Scholar 

  • Caughley, G. and Gunn, A. (1996) Conservation Biology in Theory and Practice. Cambridge, MA, Blackwell Science, 459 pp.

    Google Scholar 

  • Charlesworth, B. (1998) The effect of synergistic epistasis on the inbreeding load. Genet. Res. Camb. 71, 81-89.

    Google Scholar 

  • Charlesworth, D. and Charlesworth, B. (1987) Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237-268.

    Google Scholar 

  • Chebanov, N.A. (1979) Behavior and mating of chum salmon spawners of similar size with a significant abundance domination of males on spawning grounds. Ekologiya 2, 73-79.

    Google Scholar 

  • Chebanov, N.A. (1984) Assortative mating in pink salmon Oncorhynchus gorbuscha (Walbaum). Ekologiya 4, 70-76.

    Google Scholar 

  • Chebanov, N.A. (1990) Spawning behavior, assortative mating, and spawning success of coho salmon, Oncorhynchus kisutch, under natural and experimental conditions. J. Ichthyol. 30, 1-12.

    Google Scholar 

  • Chesser, R.K. and Ryman, N. (1986) Inbreeding as a strategy in subdivided populations. Evolution 40, 616-624.

    Google Scholar 

  • Cooney, R.T. and Brodeur, R.D. (1996) Carrying capacity and North Pacific salmon production. Rosen. Sch. Mar. Atmos. Sci. 62, 443-464.

    Google Scholar 

  • Cooper, E.L. (1961) Growth of wild and hatchery strains of brook trout. Trans. Am. Fish. Soc. 90, 424-438.

    Google Scholar 

  • Cross, T.F. and King, J. (1983) Genetic effects of hatchery rearing in Atlantic salmon. Aquaculture 33, 33-40.

    Google Scholar 

  • Courtenay, S.C., Quinn, T.P., Dupuis, M.C., Groot, C. and Lapkin, P.A. (2001) Discrimination of family-specific odours by juvenile coho salmon: roles of learning and odour concentration. J. Fish. Biol. 58, 107-125.

    Google Scholar 

  • Crnokrak, P. and Roff, D.A. (1999) Inbreeding depression in the wild. Heredity 83, 260-270.

    PubMed  Google Scholar 

  • Crow, J.F. and Kimura, M. (1970) An Introduction to Population Genetics Theory. New York, Harper & Row, Publishers, 591 pp.

    Google Scholar 

  • Crozier, W.W. and Moffett, I.J.J. (1989) Amount and distribution of biochemical-genetic variation among wild populations and a hatchery stock of Atlantic salmon, Salmo salar L., from northeast Ireland. J. Fish. Biol. 35, 665-677.

    Google Scholar 

  • Dahlgaard, J. and Hoffmann, A.A. (2000) Stress resistance and environmental dependency of inbreeding depression in Drosophila melanogaster. Conserv. Biol. 14, 1187-1192.

    Google Scholar 

  • Danielsdottir, A.K., Marteinsdottir, G., Arnason, F. and Gudjonsson, S. (1997) Genetic structure of wild and reared Atlantic salmon (Salmo salar L.) populations in Iceland. ICES J. Mar. Sci. 54, 986-997.

    Google Scholar 

  • DeRose, M.A. and Roff, D. (1999) A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution 53, 1288-1292.

    Google Scholar 

  • Ehiobu, N.G., Goddard, M.E. and Taylor, J.F. (1989) Effect of rate of inbreeding on inbreeding depression in Drosophila melanogaster. Theor. Appl. Genet. 77, 123-127.

    CAS  PubMed  Google Scholar 

  • Falconer, D.S. and Mackay, T.F.C. (1996) Introduction to Quantitative Genetics, 4th ed. Harlow, UK, Longman, 480 pp.

    Google Scholar 

  • Ferguson, M.M., Ihssen, P.E. and Hynes, J.D. (1991) Are cultured stocks of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) genetically similar to their source populations? Can. J. Fish. Aquat. Sci. 48(Suppl. 1), 118-123.

    Google Scholar 

  • Flagg, T.A., Waknitz, F.W., Maynard, D.J., Milner, G.B. and Mahnken, C.V.W. (1995) The effect of hatcheries on native coho salmon populations in the lower Columbia River. Am. Fish. Soc. Symp. 15, 366-375.

    Google Scholar 

  • Foote, C.J. (1989) Female mate preference in Pacific salmon. Anim. Behav. 38, 721-723.

    Google Scholar 

  • Foote, C.J., Brown, G.S. and Wood, C.C. (1997) Spawning success of males using alternative mating tactics in sockeye salmon, Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 54, 1785-1795.

    Google Scholar 

  • Foote, C.J. and Larkin, P.A. (1988) The role of male choice in the assortative mating of anadromous and nonanadromous sockeye salmon. Behaviour 106, 43-62.

    Google Scholar 

  • Foote, C.J., Wood, C.C. and Withler, R.E. (1989) Biochemical genetic comparison of sockeye salmon and kokanee, the anadromous and nonanadromous forms of Oncorhynchus nerka. Can. J. Fish. Aquat. Sci. 46, 149-158.

    Google Scholar 

  • Ford, M.J. (2002) Selection in captivity during supportive breeding may reduce fitness in the wild. Conservation Biology. 16, 815-825.

    Google Scholar 

  • Frankham, R. (1995a) Conservation genetics. Annu. Rev. Genet. 29, 305-327.

    CAS  PubMed  Google Scholar 

  • Frankham, R. (1995b) Effective population size/adult population size ratios in wildlife: a review. Genet. Res. Camb. 66, 95-106.

    Google Scholar 

  • Frankham, R., Ballou, J.D. and Briscoe, D.A. (eds.) (2002) Introduction to Conservation Genetics. Cambridge, UK, Cambridge University Press, 617 pp.

    Google Scholar 

  • Franklin, I.R. and Frankham, R. (1998) How large must populations be to retain evolutionary potential? Anim. Conserv. 1, 69-73.

    Google Scholar 

  • Gall, G.A.E. (1987) Inbreeding. In: Ryman, N. and Utter, F. (eds.), Population Genetics and Fisheries Management, Seattle, University of Washington Press, pp. 47-80.

    Google Scholar 

  • Geiger, H.A., Smoker, W.W., Zhivotovsky, L.A. and Gharrett, A.J. (1997) Variability of family size and marine survival in pink salmon (Oncorhynchus gorbuscha) has implications for conservation biology and human use. Can. J. Fish. Aquat. Sci. 54, 2684-2690.

    Google Scholar 

  • Gharrett, A.J. and Shirley, S.M. (1985) A genetic examination of spawning methodology in a salmon hatchery. Aquaculture 47, 245-256.

    Google Scholar 

  • Gile, S.R. and Ferguson, M.M. (1990) Crossing methodology and genotypic diversity in a hatchery strain of rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 47, 719-724.

    Google Scholar 

  • Gjerde, B., Gunnes, K. and Gjedrem, T. (1983) Effect of inbreeding on survival and growth in rainbow trout. Aquaculture 34, 327-332.

    Google Scholar 

  • Grant, W.S., García-Marín, J.L. and Utter, F.M. (1999) Defining population boundaries for fishery management. In: Mustafa, S. (ed.), Genetics in Sustainable Fisheries Management. Oxford, UK, Fishing News Books, Blackwell Science, pp. 27-72.

    Google Scholar 

  • Hard, J.J. (1995a) Genetic monitoring of life-history characters in salmon supplementation: problems and opportunities. Am. Fish. Soc. Symp. 15, 212-225.

    Google Scholar 

  • Hard, J.J. (1995b) A quantitative genetic perspective on the conservation of intraspecific diversity. Am. Fish. Soc. Symp. 17, 304-326.

    Google Scholar 

  • Hard, J.J., Connell, L., Hershberger, W.K. and Harrell, L.W. (2000) Genetic variation in mortality of chinook salmon (Oncorhynchus tshawytscha) during a bloom of the marine alga Heterosigma akashiwo. J. Fish Biol. 56, 1387-1397.

    Google Scholar 

  • Hard, J.J., Jones, R.P., Delarm, M.R. and Waples, R.S. (1992) Pacific salmon and artificial propagation under the Endangered Species Act. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-2, 56 pp.

  • Hard, J.J. and Hershberger, W.K. (1995) Quantitative genetic consequences of captive broodstock programs for anadromous Pacific salmon (Oncorhynchus spp.). In: Flagg, T.A. and Mahnken, C.V.W. (eds.), An Assessment of the Status of Captive Broodstock Technology for Pacific Salmon. Bonneville Power Administration (Project No. 93-56), P.O. Box 3621, Portland, OR 92708-3621, pp. 2-1-2-75.

    Google Scholar 

  • Hard, J.J. and Hershberger, W.K. (in press) Research on quantitative genetic consequences of captive broodstock programs for Pacific salmon populations. Annual Report to Bonneville Power Administration, P.O. Box 3621, Portland, OR 97208-3621.

  • Hartl, D.L. and Clark, A.G. (1989) Principles of Population Genetics. Sunderland, MA, Sinauer Associates, Inc. Publishers, 682 pp.

    Google Scholar 

  • Heard, W.R. (1998) Do hatchery salmon affect the North Pacific Ocean ecosystem? NPAFC Bulletin: assessment and status of Pacific Rim salmonid stocks. No. 1, pp. 405-411.

    Google Scholar 

  • Hedrick, P.W. (1984) Is there an inbreeding optimum? Zoo Biol. 3, 167-169.

    Google Scholar 

  • Hedrick, P.W. (1994) Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73, 363-372.

    PubMed  Google Scholar 

  • Hedrick, P.W. and Hedgecock, D. (1994) Effective population size in winter-run chinook salmon. Conserv. Biol. 8, 890-892.

    Google Scholar 

  • Hedrick, P.W. and Miller, P.S. (1992) Conservation genetics: techniques and fundamentals. Ecol. Appl. 2, 30-46.

    Google Scholar 

  • Hedrick, P. and Miller, P. (eds.) (1994) Endangered Pacific salmonids. Conserv. Biol. 8, 863-894.

  • Hedrick, P.W., Hedgecock, D., Hamelberg, S. and Croci, S.J. (2000a) The impact of supplementation in winter-run chinook salmon on effective population size. J. Hered. 91, 112-116.

    CAS  PubMed  Google Scholar 

  • Hedrick, P.W., Rashbrook, V.K. and Hedgecock, D. (2000b) Effective population size of winter-run chinook salmon based on microsatellite analysis of returning spawners. Can. J. Fish. Aquat. Sci. 57, 2368-2373.

    Google Scholar 

  • Hendry A.P., Wenburg, J.K., Bentzen, P., Volk, E.C. and Quinn, T.P. (2000) Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290, 516-518.

    CAS  PubMed  Google Scholar 

  • Henson, A.J. and Smith, H.D. (1967) Mate selection in a population of sockeye salmon (Oncorhynchus nerka) of mixed age groups. J. Fish. Res. Board Can. 24, 1955-1977.

    Google Scholar 

  • Hilborn, R. and Eggers, D. (2000) A review of the hatchery programs for pink salmon in Prince Williams Sound and Kodiak, Alaska. Trans. Am. Fish. Soc. 129, 333-350.

    Google Scholar 

  • Hilborn, R. and Eggers, D. (2001) Response to Wertheimer et al. Trans. Am. Fish. Soc. 130, 720-724.

    Google Scholar 

  • Hilborn, R. and Winton, J. (1993) Learning to enhance salmon production: lessons from the salmonid enhancement program. Can. J. Fish. Aquat. Sci. 50, 2043-2056.

    Google Scholar 

  • Hindar, K., Ryman, N. and Utter, F. (1991) Genetic effects of cultured fish on natural fish populations. Can. J. Fish. Aquat. Sci. 48, 945-957.

    Google Scholar 

  • Jimenez, J.A., Hughes, K.A., Alaks, G. Graham, L. and Lacy, R.C. (1994) An experimental study of inbreeding depression in a natural habitat. Science 266, 271-273.

    CAS  PubMed  Google Scholar 

  • Jonsson, B. (1997) A review of ecological and behavioural interactions between cultured and wild Atlantic salmon. ICES J. Mar. Sci. 54, 1031-1039.

    Google Scholar 

  • Jorde, P.E. and Ryman, N. (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139, 1075-1090.

    Google Scholar 

  • Kalinowski, S.T. and Hedrick, P.W. (1998) An improved method for estimating inbreeding depression in pedigrees. Zoo Biol. 17, 481-497.

    Google Scholar 

  • Kapuscinski, A.R.D. and Lannan, J.E. (1984) Application of a conceptual genetic fitness model for managing Pacific salmon fisheries. Aquaculture 43, 135-146.

    Google Scholar 

  • Kapuscinski, A.R.D. and Lannan, J.E. (1986) A conceptual genetic fitness model for fisheries management. Can. J. Fish. Aquat. Sci. 43, 1606-1616.

    Google Scholar 

  • Karkkainen, K., Kuittinen, H., Van Treuren, R., Vogl, C., Oikarinen, S. and Savolainen, O. (1999) Genetic basis of inbreeding depression in Arabis petraea. Evolution 53, 1354-1365.

    Google Scholar 

  • Kincaid, H.L. (1976a) Effects of inbreeding on rainbow trout populations. Trans. Am. Fish. Soc. 105, 273-285.

    Google Scholar 

  • Kincaid, H.L. (1976b) Inbreeding in rainbow trout (Salmo gairdneri). J. Fish. Res. Board Can. 33, 2420-2426.

    Google Scholar 

  • Kincaid, H.L. (1983) Inbreeding in fish populations used for aquaculture. Aquaculture 33, 215-227.

    Google Scholar 

  • Kincaid, H.L. (1995) An evaluation of inbreeding and effective population size in salmonid broodstocks in federal and state hatcheries. Am. Fish. Soc. Symp. 15, 193-204.

    Google Scholar 

  • Koljonen, M. (1986) The enzyme gene variation of ten Finnish rainbow trout strains and the relation between growth rate and mean heterozygosity. Aquaculture 57, 253-260.

    CAS  Google Scholar 

  • Knudsen, E.E., MacDonald, D.D. and Steward, C.R. (2000) Setting the stage for a sustainable Pacific salmon fisheries strategy. In: Knudsen, E.E., Steward, C.R., MacDonald, D.D., Williams, J.E. and Reiser, D.W. (eds.), Sustainable Fisheries Management: Pacific Salmon. New York, Lewis Publishers, CRC Press LLC, pp. 3-11.

    Google Scholar 

  • Lacy, R.C., Alaks, G. and Walsh, A. (1996) Hierarchical analysis of inbreeding depression in Peromyscus polionotus. Evolution 50, 2187-2200.

    Google Scholar 

  • Lacy, R.C., Ballou, J.D., Princee, F, Starfield, A. and Thompson, E.A. (1995) Pedigree analysis for population management. In: Ballou, J.D., Gilpin, M. and Foose, T.J. (eds.), Population Management of Survival and Recovery: Analytical Methods and Strategies in Small Population Conservation. New York: Columbia University Press, pp. 57-75.

    Google Scholar 

  • Laikre, L. (ed.) (1999) Conservation genetic management of brown trout (Salmo trutta) in Europe. Report by the concerted action on identification, management and exploitation of genetic resources in the brown trout (Salmo trutta) (TROUTCONCERT; EU FAIR CT97-3882).

  • Lande, R. and Barrowclough, G.F. (1987) Effective population size, genetic variation, and their use in population management. In: Soulé, M.E. (ed.), Viable Populations for Conservation. Cambridge, Cambridge University Press, pp. 87-123.

    Google Scholar 

  • Lande, R. and Schemske, D.W. (1985) The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24-40.

    Google Scholar 

  • Landweber, L.F. and Dobson, A.P. (eds.) (1999) Genetics and the Extinction of Species: DNA and the Conservation of Biodiversity. New Jersey, Princeton University Presss, 189 pp.

    Google Scholar 

  • Latter, B.D.H., Mulley, J.C., Reid, D. and Pascoe, L. (1995) Reduced genetic load reveled by slow inbreeding in Drosophila melanogaster. Genetics 139, 287-297.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Latter, B.D.H. and Robertson, A. (1962) The effects of inbreeding and artificial selection on reproductive fitness. Genet. Res. 3, 110-138.

    Google Scholar 

  • Loeschcke, V., Tomiuk, J. and Jain, S.K. (1994) Introductory remarks: Genetics and conservation biology. In: Loeschcke, V., Tomiuk, J. and Jain, S.K. (eds.), Conservation Genetics. Basel/Switzerland: Birkhäuser Verlag, pp. 3-8.

    Google Scholar 

  • Lynch, M. (1988) Design and analysis of experiments on random drift and inbreeding depression. Genetics 120, 791-807.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch, M. and Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sunderland, MA, Sinauer Associates, Inc. Publishers, 980 pp.

    Google Scholar 

  • McElligott, E.A., Maguire, T.M.F. and Cross, T.F. (1987) The amount and nature of electrophoretically-detectable genetic polymorphism in hatchery reared Atlantic salmon (Salmo salar). Copenhagen, Denmark ICES, 10 pp.

    Google Scholar 

  • McElhany, P., Ruckelshaus, M.H., Ford, M.J., Wainwright, T.C. and Bjorkstedt, E.P. (2000) Viable salmonid populations and the recovery of evolutionarily significant units. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-42, 1-156.

  • Miller, P.S. (1994) Is inbreeding depression more severe in a stressful environment? Zoo Biol. 13, 195-208.

    Google Scholar 

  • Mitton, J.B. (1993a) Enzyme heterozygosity, metabolism, and developmental stability. Genetica 89, 47-65.

    CAS  Google Scholar 

  • Mitton, J.B. (1993b) Theory and data pertinent to the relationship between heterozygosity and fitness. In: Thornhill, N.W. (ed.), The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives. Chicago, The University of Chicago Press, pp. 17-41.

    Google Scholar 

  • Mjolnerod, I.B., Refseth, U.H., Karlsen, E., Balstad, T., Jakobsen, K.S. and Hindar, K. (1997) Genetic differences between two wild and one farmed population of Atlantic salmon (Salmo salar) revealed by three classes of genetic markers. Hereditas 127, 239-248.

    CAS  Google Scholar 

  • Morton, N.E., Crow, J.F. and Muller, H.J. (1956) An estimation of the mutational damage in man from data on consanguineous marriages. Proc. Natl. Acad. Sci. USA. 42, 855-863.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myers, J.M., Heggelund, P.O., Hudson, G. and Iwamoto, R.N. (2001) Genetics and broodstock management of coho salmon. Aquaculture 197, 43-62.

    Google Scholar 

  • Myers, J.M., Kope, R.G., Bryant, G.J., Teel, D., Lierheimer, L.J., Wainwright, T.C., Grant, W.S., Waknitz, F.W., Neely, K., Lindley, S.T. and Waples, R.S. (1998) Status review of chinook salmon from Washington, Idaho, Oregon and California. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-35, 443 pp.

  • Nehlsen, W., Williams, J.E. and Lichatowich, J.A. (1991) Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. Fisheries 16, 4-21.

    Google Scholar 

  • Neigel, J.E. (1996) Estimation of effective population size and migration parameters from genetic data. In: Smith, T.B. and Wayne, R.K. (eds.), Molecular Genetic Approaches in Conservation. Oxford, Oxford University Press, pp. 329-346.

    Google Scholar 

  • Norris, A.T., Bradley, D.G. and Cunningham, E.P. (1999) Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar). Aquaculture 180, 247-264.

    Google Scholar 

  • NRC — National Research Council (1996) Upstream: Salmon and Society in the Pacific Northwest. Washington, D.C., National Academic Press, 452 pp.

    Google Scholar 

  • NRC — National Research Council (2002) Genetic Status of Atlantic Salmon in Maine. Washington, D.C., National Acedemic Press, 62 pp.

    Google Scholar 

  • Oosterhout, C.V., Zijlstra, W., Van Heuven, M.K. and Brakefield, P.M. (2000) Inbreeding depression and genetic load in laboratory metapopulations of the butterfly Bicyclus anynana. Evolution 54, 218-225.

    PubMed  Google Scholar 

  • Pante, M.J.R., Gjerde, B. and McMillan, I. (2001) Effect of inbreeding on body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture 192, 201-211.

    Google Scholar 

  • Partridge, L. (1983) Non-random mating and offspring fitness. In: Bateson, P. (ed.), Mate Choice. Cambridge, Cambridge University Press, pp. 227-255.

    Google Scholar 

  • Phelps, S.R., LeClair, L.L., Young, S. and Blankenship, H.L. (1994) Genetic diversity patterns of chum salmon in the Pacific Northwest. Can. J. Fish. Aquat. Sci. 51(Suppl. 1), 65-83.

    Google Scholar 

  • Policansky, D. and Magnuson, J.J. (1998) Genetics, metapopulations, and ecosystem management of fisheries. Ecol. Appl. 8(Suppl. 1), S119-S123.

    Google Scholar 

  • Pray, L.A. and Goodnight, C.J. (1995) Genetic variation in inbreeding depression in the red flour beetle Tribolium castaneum. Evolution 49, 176-188.

    Google Scholar 

  • Pray, L.A., Schwartz, J.M., Goodnight, C.J. and Stevens, L. (1994) Environmental dependency of inbreeding depression: implications for conservation biology. Conserv. Biol. 8, 562-568.

    Google Scholar 

  • Prodoehl, P.A., Walker, A.F., Hynes, R., Taggart, J.B. and Ferguson, A. (1997) Genetically monomorphic brown trout (Salmo trutta L.) populations, as revealed by mitochondrial DNA, multilocus and single-locus minisatellite (VNTR) analyses. Heredity 79, 208-213.

    Google Scholar 

  • Quinn, T.P., Unwin, M.J. and Kinninson, M.T. (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced chinook salmon populations. Evolution 54, 1372-1385.

    CAS  PubMed  Google Scholar 

  • Ralls, K. and Ballou, J. (1983) Extinction: lessons from zoos. In: Schonewald-Cox, C.M., Chambers, S.M., MacBryde, B. and Thomas, L. (eds.), Genetics and Conservation. Menlo Park, CA, Benjamin/Cummings, pp. 164-184.

    Google Scholar 

  • Ralls, K., Ballou, J.D. and Templeton, A.R. (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2, 185-193.

    Google Scholar 

  • Reilly, A., Elliott, N.G., Grewe, P.M., Clabby, C., Powell, R. and Ward, R.D. (1999) Genetic differentiation between Tasmanian cultured Atlantic salmon (Salmo salar L.) and their ancestral Canadian population: comparison of microsatellite DNA and allozyme and mitochondrial DNA variation. Aquaculture 173, 459-469.

    CAS  Google Scholar 

  • Rye, M. and Mao, I.L. (1998) Nonadditive genetic effects of inbreeding depression for body weight in Atlantic salmon (Salmo salar L.). Livest. Prod. Sci. 57, 15-22.

    Google Scholar 

  • Ryman, N. (1970) A genetic analysis of recapture frequencies of released young of salmon (Salmo salar L.) Hereditas 65, 159-160.

    Google Scholar 

  • Ryman, N. (1983) Patterns of distribution of biochemical genetic variation in salmonids: Differences between species. Aquaculture 33, 1-21.

    Google Scholar 

  • Ryman, N. (1991) Conservation genetics considerations in fishery management. J. Fish. Biol. 39(Suppl. A), 211-224.

    Google Scholar 

  • Ryman, N. (1994) Supportive breeding and effective population size: differences between inbreeding and variance effective numbers. Conserv. Biol. 8, 888-890.

    Google Scholar 

  • Ryman, N. and Laikre, L. (1991) Effects of supportive breeding on the genetically effective population size. Conserv. Biol. 5, 325-329.

    Google Scholar 

  • Ryman, N., Utter, F. and Laikre, L. (1995) Protection of intraspecific biodiversity of exploited fishes. Rev. Fish Biol. Fish. 4, 417-446.

    Google Scholar 

  • Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W. and Hanski, I. (1998) Inbreeding and extinction in a butterfly metapopulation. Nature (London) 392, 491-494.

    CAS  Google Scholar 

  • Schwartz, M.K., Tallman, D.A. and Luikart, G. (1998) Review of DNA-based census and effective population size estimators. Anim. Conserv. 1, 293-299.

    Google Scholar 

  • Selander, R.K. (1983) Evolutionary consequences of inbreeding. In: Schonewald-Cox, C.M., Chambers, S.M., MacBryde, F. and Thomas, L. (eds.), Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations. Menlo Park, California, Benjamin/Cummings, pp. 201-215.

    Google Scholar 

  • Sheffer, R.J., Hedrick, P.W. and Velasco, A.L. (1999) Testing for inbreeding and outbreeding depression in the endangered Gila tompinnow. Anim. Conserv. 2, 121-129.

    Google Scholar 

  • Shields, W.M. (1982) Philopatry, Inbreeding, and the Evolution of Sex. Albany, NY, State University of New York Press, 245 pp.

    Google Scholar 

  • Shields, W.M. (1993) The natural and unnatural history of inbreeding and outbreeding. In: Thornhill, N.W. (ed.), The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives. Chicago, The University of Chicago Press, pp. 143-169.

    Google Scholar 

  • Shrimpton, J.M. and Randall, D.J. (1992) Smolting and survival in wild and hatchery coho salmon. World Aquacult. 23, 51-54.

    Google Scholar 

  • Simon, R.C. (1991) Management techniques to minimize the loss of genetic variability in hatchery fish populations. Am. Fish. Soc. Symp. 10, 487-494.

    Google Scholar 

  • Slate, J., Kruuk, L.E.B., Marshall, T.C., Pemberton, J.M. and Clutton-Brock, T.H. (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc. Roy. Soc. Lond. Biol. Sci., Ser. B 267, 1657-1662.

    CAS  Google Scholar 

  • Ståhl, G. (1983) Differences in the amount and distribution of genetic variation between natural populations and hatchery stocks of Atlantic salmon. Aquaculture 33, 23-32.

    Google Scholar 

  • Ståhl, G. (1987) Genetic population structure of Atlantic salmon. In: Ryman, N. and Utter, F. (eds.), Population Genetics and Fisheries Management. Seattle, University of Washington Press, pp. 121-140.

    Google Scholar 

  • Su, G.S., Liljedahl, L.E. and Gall, G.A.E. (1996) Effects of inbreeding on growth and reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 142, 139-148.

    Google Scholar 

  • Tallman, R.F. (1986) Genetic differentiation among seasonally distinct spawning populations of chum salmon, Oncorhynchus keta. Aquaculture 57, 211-217.

    Google Scholar 

  • Tave, D. (1986) Genetics for Fish Hatchery Managers. Westport, Connecticut, AVI Publishing Company, Inc., 299 pp.

    Google Scholar 

  • Tave, D. (1991) Inbreeding. Aquaculture Magazine 17, 65-67.

    Google Scholar 

  • Taylor, E.B. (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 89, 185-207.

    Google Scholar 

  • Teel, D.J., Milner, G.B., Winans, G.A. and W.S. Grant. (2000) Genetic population structure and origin of life history types in chinook salmon in British Columbia, Canada. Trans. Am. Fish. Soc. 129, 194-209.

    Google Scholar 

  • Templeton, A.R. and Read, B. (1983) The elimination of inbreeding depression a captive herd of Speke's gazelle. In: Schonewald-Cox, C.M., Chambers, S.M., MacBryde, B. and Thomas, L. (eds.), Genetics and Conservation. Menlo Park, CA, Benjamin/Cummings.

    Google Scholar 

  • Templeton, A.R. and Read, B. (1994) Inbreeding: One word, several meanings, much confusion. In: Loeschcke, V., Tomiuk, J. and Jain, S.K. (eds.), Conservation Genetics. Basel/Switzerland, Birkhäuser Verlag, pp. 91-105.

    Google Scholar 

  • Tessier, N., Bernatchez, L. and Wright, J.M. (1997) Population structure and impact of supportive breeding inferred from mitochondiral and microsatellite DNA analyses in land-locked Atlantic salmon Salmo salar L. Mol. Ecol. 6, 735-750.

    Google Scholar 

  • Thomaz, D., Beall, E. and Burke, T. (1997) Alternative reproductive tactics in Atlantic salmon: factors affecting mature parr success. Proc. Roy. Soc. Lond. Biol. Sci., Ser. B 264(1379), 219-226.

    Google Scholar 

  • Thornhill, N.W. (ed.) (1993) The Natural History of Inbreeding and Outbreeding. Chicago, University of Chicago Press, 575 pp.

    Google Scholar 

  • Unwin, M.J. (1997) Fry-to-adult survival of natural and hatchery-produced chinook salmon (Oncorhynchus tshawytscha) from a common origin. Can. J. Fish. Aquat. Sci. 54, 1246-1254.

    Google Scholar 

  • Utter, F. (1998) Genetic problems of hatchery-rear progeny released into the wild, and how to deal with them. Bull. Mar. Sci. 62, 623-640.

    Google Scholar 

  • Utter, F. (2001) Patterns of subspecific anthropogenic introgression in two salmonid genera. Rev. Fish Biol. Fish. 10, 435-451.

    Google Scholar 

  • Utter, F.M., Chapman, D.W. and Marshall, A.R. (1995) Genetic population structure and history of chinook salmon of the upper Columbia River. Am. Fish. Soc. Symp. 17, 149-165.

    Google Scholar 

  • Utter, F., Hindar, K. and Ryman, N. (1993) Genetic effects of aquaculture on natural salmonid populations. In: Heen, K., Monahan, R.L. and Utter, F. (eds.), Salmon Aquaculture. Oxford, Fishing News Books, pp. 144-165.

    Google Scholar 

  • Utter, F., Milner, G., Ståhl, G. and Teel, D. (1989) Genetic population structure of chinook salmon, Oncorhynchus tschawytscha, in the Pacific Northwest. Fish. Bull. 85, 13-23.

    Google Scholar 

  • Verspoor, E. (1988) Reduced genetic variability in first-generation hatchery populations of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 45, 1686-1690.

    Google Scholar 

  • Vuorinen, J. (1982) Little genetic variation in the Finnish Lake salmon, Salmo salar sebago (Girard). Hereditas 97, 189-192.

    Google Scholar 

  • Wang, J.L. (2000) Effects of population structures and selection strategies on the purging of inbreeding depression due to deleterious mutations. Genetical Research, Cambridge 76, 75-86.

    CAS  Google Scholar 

  • Wang, S., Hard, J.J. and Utter, F. 2002. Genetic variation and fitness in salmonids. Conservation Genetics (in press).

  • Waples, R.S. (1990a) Conservation genetics of Pacific salmon. II. Effective population size and the rate of loss of genetic variability. J. Hered. 81, 267-276.

    Google Scholar 

  • Waples, R.S. (1990b) Conservation genetics of Pacific salmon. III. Estimating effective population size. J. Hered. 81, 277-289.

    Google Scholar 

  • Waples, R.S. (1991) Genetic interactions between hatchery and wild salmonids: lessons from the Pacific Northwest. Can. J. Fish. Aquat. Sci. 48(suppl. 1), 124-133.

    Google Scholar 

  • Waples, R.S. (1999) Dispelling some myths about hatcheries. Fisheries 24, 12-21.

    Google Scholar 

  • Waples, R.S. (2002) Definition and estimation of effective population size in the conservation of endangered species. In: Beissinger, S.R. and McCullough, D.R. (eds.), Population Viability Analysis. Chicago, IL, University of Chicago Press, pp. 147-168.

    Google Scholar 

  • Waples, R.S. and Do, C. (1994) Genetic risk associated with supplementation of Pacific salmonids: Captive broodstock programs. Can. J. Fish. Aquat. Sci. 51(suppl. 1), 310-329.

    Google Scholar 

  • Waser, N.M. (1993) Population structure, optimal outbreeding, and assortative mating in angiosperms. In: Thornhill, N.W. (ed.), The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives. Chicago, The University of Chicago Press, pp. 173-199.

    Google Scholar 

  • Wertheimer, A.C., Smoker, W.W., Joyce, T.L. and Heard, W.R. (2001) Hatchery pink salmon in Prince William Sound: enhancement or displacement. Trans. Am. Fish. Soc. 130, 712-719.

    Google Scholar 

  • Winkler, F.M., Bartley, D. and Diaz, N.F. (1999) Genetic differences among year classes in a hatchery population of a coho salmon (Oncorhynchus kisutch (Walbaum, 1792)) in Chile. Aquaculture 173, 423-431.

    Google Scholar 

  • Withler, R.E. (1988) Genetic consequences of fertilizing chinook salmon (Oncorhynchus tshawytscha) eggs with pooled milt. Aquaculture 68, 15-25.

    Google Scholar 

  • Withler, R.E. and Beacham, T.D. (1994) Genetic consequences of the simultaneous or sequential addition of semen from multiple males during hatchery spawning of chinook salmon (Oncorhynchus tshawytscha). Aquaculture 126, 11-23.

    Google Scholar 

  • Wood, C.C. (1995) Life history variation and population structure in sockeye salmon. Am. Fish. Soc. Symp. 17, 195-216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Utter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Hard, J.J. & Utter, F. Salmonid inbreeding: a review. Reviews in Fish Biology and Fisheries 11, 301–319 (2002). https://doi.org/10.1023/A:1021330500365

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021330500365

Navigation