Skip to main content
Log in

Divergence in Mate Choice Systems: does Evolution Play by Rules?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Understanding the genetic bases of phenotypes associated with the earliest stages of divergence will reveal a great deal about species formation. I review a number of model systems, most involving plant–insect interactions, that have already revealed genetic aspects of incipient speciation. It is suggested that progress in understanding the causal forces driving mating signal evolution and incipient speciation will be expedited in model systems where; (1) ecological and evolutionary information is available, (2) different aspects of mating behaviors that function in mate and/or species recognition are known, (3) genetic analysis of single phenotypes is undertaken, (4) analysis of sexual selection and isolation is performed under natural conditions (or in the wild), and (5) comparative data from related species are available to assess phylogenetic trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alatalo, R.V., L. Gustafsson & A. Lundberg, 1994. Male coloration and species recognition in sympatric flycatchers. Proc. R. Soc. Lond. B 256: 113–118.

    Google Scholar 

  • Alonso-Pimentel, H. & T.R. Tobin, 1992. Discriminant function analysis of the courtship behavior of Drosophila mojavensis (Diptera: Drosophilidae). J. Insect Behav. 5: 131–139.

    Google Scholar 

  • Bakker, T.C.M., R. Kunzler & D. Mazzi, 1999. Condition-related mate choice in sticklebacks. Nature 401: 234.

    Google Scholar 

  • Barron, A.B. & S.A. Corbet, 1999. Preimaginal conditioning in Drosophila revisited. Anim. Behav. 58: 621–628.

    Google Scholar 

  • Barth, M., H.V.B. Hirsch & M. Heisenberg, 1997. Rearing in different light regimes affects courtship behavior in Drosophila melanogaster. Anim. Behav. 53: 25–38.

    Google Scholar 

  • Basolo, A.L., 1995. Phylogenetic evidence for the role of a preexisting bias in sexual selection. Proc. R. Soc. Lond. B 259: 307–311.

    Google Scholar 

  • Berlocher, S.H. & J.L. Feder, 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? Annu. Rev. Entomol. 47: 773–815.

    Google Scholar 

  • Bertram, S., M. Berrill & E. Nol, 1996. Male mating success and variation in chorus attendance within and among breeding seasons in the gray treefrog (Hyla versicolor). Copeia 1996: 729–734.

    Google Scholar 

  • Blair, W.F., 1974. Character displacement in frogs. Am. Zool. 14: 1119–1125.

    Google Scholar 

  • Blows, M.W., 2002. Interaction between natural and sexual selection during the evolution of mate recognition. Proc. R. Soc. Lond. B 269: 1113–1118.

    Google Scholar 

  • Boake, C.R.B., M.P. DeAngelis & D.K. Andreadis, 1997. Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed fly Drosophila heteroneura. Proc. Natl. Acad. Sci. USA 94: 12442–12445.

    Google Scholar 

  • Borgia, G., 1995. Complex male display and female choice in the spotted bowerbird: specialized functions for different bower decorations. Anim. Behav. 1291–1301.

  • Boughman, J.W., 2001. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411: 944–948.

    Google Scholar 

  • Bradshaw, H.D., S.M. Wilbert, K.G. Otto & D.W. Schemske, 1995. Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376: 762–765.

    Google Scholar 

  • Brazner, J.C., 1983. The influence of rearing environment on sexual isolation between populations of Drosophila mojavensis: an alternative to the character displacement hypothesis. MS Thesis, Syracuse University, Syracuse, NY.

    Google Scholar 

  • Brazner, J.C. & W.J. Etges, 1993. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. II. Effects of larval substrates on time to copulation, mate choice, and mating propensity. Evol. Ecol. 7: 605–624.

    Google Scholar 

  • Bush, G.L., 1975. Sympatric speciation in phytophagous insects, pp. 187–206 in Evolutionary strategies of parasitic insects and mites, edited by P.W. Price. Plenum Press, New York.

    Google Scholar 

  • Butlin, R., 1995. Genetic variation in mating signals and responses, pp. 327–366 in Speciation and the Recognition Concept: Theory and Application, edited by H.G. Spencer. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Butlin, R.K. & G.M. Hewitt, 1988. Genetics of behavioural and morphological differences between parapatric subspecies of Chorthippus parallelus (Orthoptera: Acrididae). Biol. J. Linn. Soc. 33: 233–248.

    Google Scholar 

  • Butlin, R. & M.G. Ritchie, 2001. Searching for speciation genes. Nature 412: 31–32.

    Google Scholar 

  • Byrne, C., 1999. Behaviour-genetic analysis of lovesongs in desert species of Drosophila. PhD Thesis, University of Leicester, Leicester.

    Google Scholar 

  • Carroll, S.P. & C. Boyd, 1992. Host race radiation in the soapberry bug: natural history with the history. Evolution 46: 1052–1069.

    Google Scholar 

  • Carroll, S.P., H. Dingle & S.P. Klassen, 1997. Genetic differentiation of fitness-related traits among rapidly evolving populations of the soapberry bug. Evolution 51: 1182–1188.

    Google Scholar 

  • Carson, H.L., 1978. Speciation and sexual selection in Hawaiian Drosophila, pp. 93–107 in Ecological Genetics: The Interface, edited by P.F. Brussard. Springer-Verlag, New York.

    Google Scholar 

  • Carson, H.L., 1987. Chromosomal evolution of Hawaiian Drosophila. Trends Ecol. Evol. 2: 200–206.

    Google Scholar 

  • Carson, H.L., 2000. Sexual selection in populations: the facts require a change in the genetic definition of the species, pp. 495–512 in Evolutionary Genetics: From Molecules to Morphology, edited by C. Krimbas. Cambridge University Press, New York.

    Google Scholar 

  • Carson, H.L., 2002. Female choice in Drosophila: evidence from Hawaii and implications for evolutionary biology. Genetica 116: 383–393.

    Google Scholar 

  • Carson, H.L. & K.Y. Kaneshiro, 1976. Drosophila of Hawaii: systematics and ecological genetics. Annu. Rev. Ecol. Syst. 7: 311–345.

    Google Scholar 

  • Carson, H.L. & R. Lande, 1984. Inheritance of a secondary sexual character in Drosophila sylvestris. Proc. Natl. Acad. Sci. USA 81: 6904–6907.

    Google Scholar 

  • Cobb, M. & J.-F. Ferveur, 1996. Evolution and genetic control of mate recognition and stimulation in Drosophila. Behav. Proc. 35: 35–54.

    Google Scholar 

  • Coyne, J.A. & B. Charlesworth, 1989. Genetic analysis of X-linked sterility in hybrids between three sibling species of Drosophila. Heredity 62: 97–106.

    Google Scholar 

  • Coyne, J.A., A.P. Crittenden & K. Mah, 1994. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265: 1461–1464.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1989a. Patterns of speciation in Drosophila. Evolution 43: 362–381.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1989b. Two rules of speciation, pp. 180–207 in Speciation and Its Consequences, edited by J.A. Endler. Sinauer, Sunderland, MA.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1997. “Patterns of speciation in Drosophila” revisited. Evolution 51: 295–303.

    Google Scholar 

  • Coyne, J.A., H.A. Orr & D.J. Futuyma, 1988. Do we need a new species concept? Syst. Zool. 37: 190–200.

    Google Scholar 

  • Coyne, J.A., C. Wicker-Thomas & J.-M. Jallon, 1999. A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genet. Res. Camb. 73: 189–203.

    Google Scholar 

  • Craig, T.P., J.K. Itami, W.G. Abrahamson & J.D. Horner, 1993. Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47: 1696–1710.

    Google Scholar 

  • Dallerac, R., C. Labeur & C. Wicker-Thomas, 2000. A Delta-9 desaturase gene with a different substrate specificity is responsible for cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 9449–9454.

    Google Scholar 

  • David, P., T. Bjorksten, A. Pomiankowski & K. Fowler, 2000. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406: 186–188.

    Google Scholar 

  • Dobzhansky, T., 1936. Studies of hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21: 113–135.

    Google Scholar 

  • Dobzhansky, T., 1940. Speciation as a stage in evolutionary divergence. Am. Nat. 74: 312–321.

    Google Scholar 

  • Dodd, D.M.B., 1989. Reproductive isolation as a consequence of adaptive divergence in Drosophila pseudoobscura. Evolution 43: 1308–1311.

    Google Scholar 

  • Doebley, J. & A. Stec, 1993. Inheritance of the morphological differences between maize and teosinte: comparison of the results for two F2 populations. Genetics 134: 559–570.

    Google Scholar 

  • Doi, M., M. Matsuda, M. Tomaru, H. Matsubayashi & Y. Oguma, 2001. A locus for female discrimination behavior causing sexual isolation in Drosophila. Proc. Natl. Acad. Sci. USA 98: 6714–6719.

    Google Scholar 

  • Downing, R.J., 1985. The chemical basis for host plant selection in Drosophila mojavensis. MS Thesis, University of Denver, Denver, CO.

    Google Scholar 

  • Droney, D.C., 1992. Sexual selection in a lekking Hawaiian Drosophila: the roles of male competition and female choice in male mating success. Anim. Behav. 44: 1007–1020.

    Google Scholar 

  • Durando, C.M., R.H. Baker, W.J. Etges, W.B. Heed, M. Wasserman & R. DeSalle, 2000. Phylogenetic analysis of the repleta species group of the genus Drosophila using multiple sources of characters. Mol. Phylogenet. Evol. 16: 296–307.

    Google Scholar 

  • Ehrman, L., 1990. Developmental isolation and subsequent adult behavior of Drosophila pseudoobscura. Behav. Genet. 20: 609–615.

    Google Scholar 

  • Ehrman, L. & M. Wasserman, 1987. The significance of asymmetrical sexual isolation. Evol. Biol. 21: 1–20.

    Google Scholar 

  • Etges, W.J., 1989. Evolution of developmental homeostasis in Drosophila mojavensis. Evol. Ecol. 3: 189–201.

    Google Scholar 

  • Etges, W.J., 1990. Direction of life history evolution in Drosophila mojavensis, pp. 37–56 in Ecological and Evolutionary Genetics of Drosophila, edited by R.J. MacIntyre. Plenum Press, New York.

    Google Scholar 

  • Etges, W.J., 1992. Premating isolation is determined by larval substrates in cactophilic Drosophila mojavensis. Evolution 46: 1945–1950.

    Google Scholar 

  • Etges, W.J., 1993. Genetics of host-cactus response and life-history evolution among ancestral and derived populations of cactophilic Drosophila mojavensis. Evolution 47: 750–767.

    Google Scholar 

  • Etges, W.J., 1998. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IV.Correlated responses in behavioral isolation to artificial selection on a life history trait. Am. Nat. 152: 129–144.

    Google Scholar 

  • Etges, W.J. & M.A. Ahrens, 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am. Nat. 158: 585–598.

    Google Scholar 

  • Etges, W.J. & L.L. Jackson, 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VI. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27: 2125–2149.

    Google Scholar 

  • Etges, W.J., W.R. Johnson, G.A. Duncan, G. Huckins & W.B. Heed, 1999. Ecological genetics of cactophilic Drosophila, pp. 164–214 in Ecology of Sonoran Desert Plants and Plant Communities, edited by R. Robichaux. University of Arizona Press, Tucson.

    Google Scholar 

  • Ewing, A.W. & J.A. Miyan, 1986. Sexual selection, sexual isolation and the evolution of song in the Drosophila repleta group of species. Anim. Behav. 34: 421–429.

    Google Scholar 

  • Feder, J.L., S.B. Opp, B. Wlazlo, K. Reynolds, W. Go & S. Spisak, 1994. Host fidelity is an effective premating barrier between sympatric races of the apple magot fly. Proc. Natl. Acad. Sci. USA 91: 7990–7994.

    Google Scholar 

  • Fellers, G.M., 1979. Mate selection in the gray treefrog, Hyla versicolor. Copeia 1979: 286–290.

    Google Scholar 

  • Filchak, K.E., J.B. Roethele & J.L. Feder, 2000. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407: 739–742.

    Google Scholar 

  • Fitzpatrick, M.J. & D.A. Gray, 2001. Divergence between the courtship songs of the field crickets Gryllus texensis and Gryllus rubens (Orthoptera: Gryllidae). Ethology 107: 1075–1085.

    Google Scholar 

  • Funk, D.J., 1998. Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52: 1744–1759.

    Google Scholar 

  • Funk, D.J., D.J. Futuyma, G.G. Orti & A. Meyer, 1995. A history of host associations and evolutionary diversification for Ophraella (Coleoptera: Chrysomelidae): new evidence from mitochondrial DNA. Evolution 49: 1008–1017.

    Google Scholar 

  • Gerhardt, H.C., 1982. Sound pattern recognition in some North American treefrogs (Anura: Hylidae): Implications for mate choice. Am. Zool. 22: 581–595.

    Google Scholar 

  • Gerhardt, H.C., 1994. Reproductive character displacement of female mate choice in the grey treefrog, Hyla chrysoscelis. Anim. Behav. 47: 959–969.

    Google Scholar 

  • Giddings, L.V. & A.R. Templeton, 1983. Behavioral phylogenies and the direction of evolution. Science 220: 372–378.

    Google Scholar 

  • Gleason, J.M. & M.G. Ritchie, 1998. Evolution of courtship song and reproductive isolation in the Drosophila willistoni species complex: do sexual signals diverge the most quickly? Evolution 52: 1493–1500.

    Google Scholar 

  • Gray, D.A. & W.H. Cade, 2000. Sexual selection and speciation in field crickets. Proc. Natl. Acad. Sci. USA 97: 14449–14454.

    Google Scholar 

  • Gray, D.A. & G. Eckhardt, 2001. Is cricket courtship song condition dependent? Anim. Behav. 62: 871–877.

    Google Scholar 

  • Greenfield, M.D., 1997. Sexual selection and the evolution of advertisement signals, pp. 145–177 in Perspectives in Ethology, edited by N. Thompson. Plenum Press, New York.

    Google Scholar 

  • Griffith, S.C., I.P.F. Owens & T. Burke, 1999. Environmental determination of a sexually selected trait. Nature 400: 358–360.

    Google Scholar 

  • Hall, J.C., 1994. The mating of a fly. Science 264: 1702–1714.

    Google Scholar 

  • Hawthorne, D.J. & S. Via, 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412: 904–907.

    Google Scholar 

  • Heed, W.B. & R.L. Mangan, 1986. Community ecology of the Sonoran Desert Drosophila, pp. 311–345 in The Genetics and Biology of Drosophila, edited by J.J.N. Thompson. Academic Press, New York.

    Google Scholar 

  • Henry, C.S., 1985. Sibling species, call differences, and speciation in green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Evolution 39: 965–984.

    Google Scholar 

  • Henry, C.S., 1994. Singing and cryptic speciation in insects. Trends Ecol. Evol. 9: 388–392.

    Google Scholar 

  • Higgie, M., S. Chenoweth & M.W. Blows, 2000. Natural selection and the reinforcement of mate recognition. Science 290: 519–521.

    Google Scholar 

  • Hoikkala, A., S. Crossley & C. Castillo-Melendez, 2000. Copulatory courtship in Drosophila birchii and D. serrata, species recognition and sexual selection. J. Insect Behav. 13: 361–373.

    Google Scholar 

  • Hollocher, H., C.-T. Ting, F. Pollack & C.-I. Wu, 1997a. Incipient speciation by sexual isolation in Drosophila melanogaster: variation in mating preference among natural isolates. Evolution 51: 1175–1181.

    Google Scholar 

  • Hollocher, H., C.T. Ting, M.L. Wu & C.-I. Wu, 1997b. Incipient speciation by sexual isolation in Drosophila melanogaster: extensive genetic divergence without reinforcement. Genetics 147: 1191–1201.

    Google Scholar 

  • Hostert, E.E., 1997. Reinforcement: a new perspective on an old controversy. Evolution 51: 697–702.

    Google Scholar 

  • Howard, D.J., 1993. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis, pp. 46–69 in Hybrid Zones and the Evolutionary Process, edited by R.G. Harrison. Oxford University Press, New York.

    Google Scholar 

  • Howard, R.W., 1998. Ontogenetic, reproductive, and nutritional effects on the cuticular hydrocarbons of the host-specific ectoparasitoid Cephalonomia tarsalis (Hymenoptera: Bethylidae). Ann. Entomol. Soc. Am. 91: 101–112.

    Google Scholar 

  • Howard, D.J. & P.G. Gregory, 1993. Post-insemination signalling systems and reinforcement. Phil. Trans. R. Soc. Lond. Ser. B 340: 231–236.

    Google Scholar 

  • Howard, R.D. & J.R. Young, 1998. Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim. Behav. 55: 1165–1179.

    Google Scholar 

  • Jiggins, C.D., W.O. McMillan, P. King & J. Mallet, 1997. The maintenance of species differences across a Heliconius hybrid zone. Heredity 79: 495–505.

    Google Scholar 

  • Kaneshiro, K.Y., 1980. Sexual isolation, speciation and the direction of evolution. Evolution 34: 437–444.

    Google Scholar 

  • Kaneshiro, K.Y., 1983. Sexual selection and the direction of evolution in the biosystematics of Hawaiian Drosophila. Annu. Rev. Ecol. Syst. 23: 161–178.

    Google Scholar 

  • Kim, Y.-K., L. Ehrman & H.R. Koepfer, 1992. Developmental isolation and subsequent adult behavior of Drosophila paulistorum. I. Survey of the six semispecies. Behav. Genet. 22: 545–556.

    Google Scholar 

  • Kim, Y.-K., L. Ehrman & H.R. Koepfer, 1996. Developmental isolation and subsequent adult behaviour of Drosophila paulistorum. II. Prior experience. Behav. Genet. 26: 15–26.

    Google Scholar 

  • Koepfer, H.R., 1987. Selection for sexual isolation between geographic forms of Drosophila mojavensis. I. Interactions between the selected forms. Evolution 41: 37–48.

    Google Scholar 

  • Krebs, R.A., 1990. Courtship behavior and control of reproductive isolation in Drosophila mojavensis: genetic analysis of population hybrids. Behav. Genet. 20: 535–543.

    Google Scholar 

  • Kyriacou, C.P., 2002. Single gene mutations in Drosophila: what can they tell us about the evolution of sexual behaviour? Genetica 116: 197–203.

    Google Scholar 

  • Lambert, D.M. & H.G. Spencer, 1995. Speciation and the Recognition Concept: Theory and Application. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Lande, R., 1981. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 78: 3721–3725.

    Google Scholar 

  • Lande, R. & M. Kirkpatrick, 1988. Ecological speciation by sexual selection. J. Theor. Biol. 133: 85–98.

    Google Scholar 

  • Lande, R., O. Seehausen & J.J.M. van Alphen, 2001. Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish. Genetica 112-113: 435–443.

    Google Scholar 

  • Maddison, W.P. & D.R. Maddison, 1992. MacClade: Analysis of Phylogeny and Character Evolution, Version 3.08. Sinauer, Sunderland, MA.

    Google Scholar 

  • Markow, T.A., 1981a. Courtship behavior and control of reproductive isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 35: 1022–1027.

    Google Scholar 

  • Markow, T.A., 1981b. Mating preferences are not predictive of the direction of evolution in experimental populations of Drosophila. Science 213: 1405–1407.

    Google Scholar 

  • Markow, T.A., 1991. Sexual isolation among populations of Drosophila mojavensis. Evolution 45: 1525–1529.

    Google Scholar 

  • Markow, T.A., J.C. Fogleman & W.B. Heed, 1983. Reproductive isolation in Sonoran Desert Drosophila. Evolution 37: 649–652.

    Google Scholar 

  • Markow, T.A., M. Quaid & S. Kerr, 1978. Male mating experience and competitive courtship success in Drosophila melanogaster. Nature 276: 821–822.

    Google Scholar 

  • Markow, T.A. & E.C. Toolson, 1990. Temperature effects on epicuticular hydrocarbons and sexual isolation in Drosophila mojavensis, pp. 315–331 in Ecological and Evolutionary Genetics of Drosophila, edited by R.J. MacIntyre. Plenum Press, New York.

    Google Scholar 

  • Marshall, C.R., H.A. Orr & N.H. Patel, 1999. Morphological innovation and developmental genetics. Proc. Natl. Acad. Sci. USA 96: 9995–9996.

    Google Scholar 

  • Mead, L.S. & P.A. Verrell, 2002. Evolution of courtship behaviour patterns and reproductive isolation in the Desmognathus ochrophaeus complex. Ethology 108: 403–427.

    Google Scholar 

  • Muller, H.J., 1942. Isolating mechanisms, evolution and temperature. Biol. Symp. 6: 71–125.

    Google Scholar 

  • Murphy, C.G., 1994. Determinants of chorus tenure in barking treefrogs (Hyla gratiosa). Behav. Ecol. Sociobiol. 34: 285–294.

    Google Scholar 

  • Newby, B.D. & W.J. Etges, 1998. Host preference among populations of Drosophila mojavensis that use different host cacti. J. Insect Behav. 11: 691–712.

    Google Scholar 

  • Noor, M.A., 1995. Speciation driven by natural selection in Drosophila. Nature 375: 674–675.

    Google Scholar 

  • Noor, M.A.F., 1999. Reinforcement and other consequences of sympatry. Heredity 83: 503–508.

    Google Scholar 

  • Noor, M.A.F. & J.A. Coyne, 1996. Genetics of a difference in cuticular hydrocarbons between Drosophila pseudoobscura and D. persimilis. Genet. Res. 68: 117–123.

    Google Scholar 

  • Noor, M.A.F., K.L. Grams, L.A. Bertucci & J. Reiland, 2001. Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. USA 98: 12084–12088.

    Google Scholar 

  • Orr, H.A., 1992. Mapping and characterization of a speciation gene in Drosophila. Genet. Res. Camb. 59: 73–80.

    Google Scholar 

  • Orr, H.A., 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Panhuis, T.M., R. Butlin, M. Zuk & T. Tregenza, 2001. Sexual selection and speciation. Trends Ecol. Evol. 16: 364–371.

    Google Scholar 

  • Paterson, H.E.H., 1993. Evolution and the Recognition Concept of Species: Collected Writings. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Pfennig, K.S., 1998. The evolution of mate choice and the potential for conflict between species and mate-quality recognition. Proc. R. Soc. Lond. B 265: 1743–1748.

    Google Scholar 

  • Phelan, P.L., 1997. Genetic and phylogenetics in the evolution of sex pheromones, pp. 563–579 in Insect pheromone research: new directions, edited by A.K. Minks. Chapman & Hall, New York.

    Google Scholar 

  • Reinhold, K., 1998. Sex linkage among genes controlling sexually selected traits. Behav. Ecol. Sociobiol. 44: 1–7.

    Google Scholar 

  • Rice, W.R. & E.E. Hostert, 1993. Laboratory experiments on speciation: what have we learned in 40 years? Evolution 47: 1637–1653.

    Google Scholar 

  • Ritchie, M.G., 2000. The inheritance of female preference functions in a mate recognition system. Proc. R. Soc. Lond. B 267: 327–332.

    Google Scholar 

  • Ritchie, M.G. & S.D.F. Phillips, 1998. The genetics of sexual isolation, pp. 291–308 in Endless Forms: Species and Speciation, edited by S.H. Berlocher. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Roelofs, W., T.G.C. Eckenrode, X.-H.T.C. Lofstedt, I.S.B.S. Hansson & P.R.B.O. Bengtsson, 1987. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc. Natl. Acad. Sci. USA 84: 7585–7589.

    Google Scholar 

  • Ruiz, A., W.B. Heed & M. Wasserman, 1990. Evolution of the mojavensis cluster of cactophilic Drosophila with descriptions of two new species. J. Hered. 81: 30–42.

    Google Scholar 

  • Ryan, M.J. & A.S. Rand, 1993. Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47: 647–657.

    Google Scholar 

  • Ryan, M.J. & A.S. Rand, 1999. Phylogenetic influence on mating call preferences in female tungara frogs, Physalaemus pustulosus. Anim. Behav. 57: 945–956.

    Google Scholar 

  • Sætre, G.-P., T. Moum, S. Bures, M. Kral, M. Adamjan & J. Moreno, 1997. A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 387: 589–592.

    Google Scholar 

  • Schemske, D.W. & H.D. Bradshaw Jr., 1999. Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc. Natl. Acad. Sci. USA 96: 11910–11915.

    Google Scholar 

  • Schluter, D. & T. Price, 1993. Natural selection and parallel speciation. Trends Ecol. Evol. 6: 197–200.

    Google Scholar 

  • Schwartz, J.M., 1991. Effect of sexual experience on male mating success in Drosophila silvestris. Anim. Behav. 42: 1017–1019.

    Google Scholar 

  • Seehausen, O. & J.J.M. van Alphen, 1998. The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav. Ecol. Sociobiol. 42: 1–8.

    Google Scholar 

  • Shaw, K.L., 1996. Polygenic inheritance of a behavioral phenotype: interspecific genetics of song in the Hawaiian cricket genus Laupala. Evolution 50: 256–266.

    Google Scholar 

  • Spiess, E.B., 1987. Discrimination among prospective mates in Drosophila, pp. 75–129 in Kin Recognition in Animals, edited by C.D. Michener. Wiley, New York.

    Google Scholar 

  • Spiess, E.B. & L.D. Spiess, 1967. Mating propensity, chromosomal polymorphism, and dependent conditions in Drosophila persimilis. Evolution 21: 672–678.

    Google Scholar 

  • Spieth, H.T. & J.M. Ringo, 1983. Mating behavior and sexual isolation in Drosophila, pp. 223–284 in The Genetics and Biology of Drosophila, edited by J.N. Thompson. Academic Press, New York.

    Google Scholar 

  • Stennett, M.D. & W.J. Etges, 1997. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J. Chem. Ecol. 23: 2803–2824.

    Google Scholar 

  • Takahashi, A., S.C. Tsaur, J.A. Coyne & C.I. Wu, 2001. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98: 3920–3925.

    Google Scholar 

  • Tan, C.C., 1946. Genetics of sexual isolation between Drosophila pseudoobscura and Drosophila persimilis. Genetics 31: 558–573.

    Google Scholar 

  • Tanksley, S.D., 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205–233.

    Google Scholar 

  • Ting, C.T., A. Takahashi & C.I. Wu, 2001. Incipient speciation by sexual isolation in Drosophila: concurrent evolution at multiple loci. Proc. Natl. Acad. Sci. USA 98: 6709–6713.

    Google Scholar 

  • Turner, G.F. & M.T. Burrows, 1995. A model of sympatric speciation by sexual selection. Proc. R. Soc. Lond. B 260: 287–292.

    Google Scholar 

  • Uy, J.A.C. & G. Borgia, 2000. Sexual selection drives rapid divergence in bowerbird display traits. Evolution 54: 273–278.

    Google Scholar 

  • Veen, T., T. Borge, S.C. Griffith, G.-P. Sætre, S. Buresk, L. Gustafsson & B.C. Sheldon, 2001. Hybridization and adaptive mate choice in flycatchers. Nature 411: 45–50.

    Google Scholar 

  • Via, S., 1990. Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annu. Rev. Entomol. 35: 421–446.

    Google Scholar 

  • Wasserman, M., 1992. Cytological evolution of the Drosophila repleta species group, pp. 455–552 in Drosophila Inversion Polymorphism, edited by J.R. Powell. CRC Press, Boca Raton.

    Google Scholar 

  • Wasserman, M. & H.R. Koepfer, 1977. Character displacement for sexual isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 31: 812–823.

    Google Scholar 

  • Wasserman, M. & H.R. Koepfer, 1980. Does asymmetrical mating preference show the direction of evolution? Evolution 34: 1116–1124.

    Google Scholar 

  • Welbergen, P., F.R. van Dijken, W. Scharloo & W. Kohler, 1992. The genetic basis of sexual isolation between Drosophila melanogaster and D. simulans. Evolution 46: 1385–1398.

    Google Scholar 

  • Welch, A.M., R.D. Semlitsch & H.C. Gerhardt, 1998. Call duration as an indicator of genetic quality in male gray tree frogs. Science 280: 1928–1930.

    Google Scholar 

  • Wood, T.K. & S.I. Guttman, 1983. The Enchenopa binotata complex: sympatric speciation? Science 220: 310–312.

    Google Scholar 

  • Wood, T.K., K.J. Tilmon, A.B. Shantz, C.K. Harris & J. Pesek, 1999. The role of host-plant fidelity in initiating insect race formation. Evol. Ecol. Res. 1: 317–332.

    Google Scholar 

  • Woolbright, L.L. & M.M. Stewart, 1987. Foraging success of the tropical frog Eleutherodactylus coqui: the cost of calling. Copiea 1987: 69–75.

    Google Scholar 

  • Wu, C.-I., H. Hollocher, D.J. Begun, C.F. Aquadro, Y. Xu & M.-L. Wu, 1995. Sexual isolation in Drosophila melanogaster: A possible case of incipient speciation. Proc. Natl. Acad. Sci. USA 92: 2519–2523.

    Google Scholar 

  • Wu, C.-I. & M.F. Palopoli, 1994. Genetics of postmating reproductive isolation in animals. Annu. Rev. Genet. 27: 283–308.

    Google Scholar 

  • Yamamoto, D., M. Kasei, J.-M. Jallon & A. Komatsu, 1997. Genetic dissection of sexual behavior in Drosophila melanogaster. Annu. Rev. Entomol. 42: 551–585.

    Google Scholar 

  • Zouros, E., 1981. The chromosomal basis of sexual isolation in two sibling species of Drosophila: D. arizonensis and D. mojavensis. Genetics 97: 703–718.

    Google Scholar 

  • Zouros, E. & C.J. d'Entremont, 1974. Sexual isolation among populations of Drosophila mojavensis race B. Dros. Inf. Serv. 51: 112.

    Google Scholar 

  • Zouros, E. & C.J. d'Entremont, 1980. Sexual isolation among populations of Drosophila mojavensis: response to pressure from a related species. Evolution 34: 421–430.

    Google Scholar 

  • Zouros, E., K. Lofdahl & P.A. Martin, 1988. Male hybrid sterility in Drosophila: interactions between autosomes and sex chromosomes in crosses of D. mojavensis and D. arizonensis. Evolution 42: 1321–1331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etges, W.J. Divergence in Mate Choice Systems: does Evolution Play by Rules?. Genetica 116, 151–166 (2002). https://doi.org/10.1023/A:1021284426383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021284426383

Navigation