Skip to main content
Log in

Microorganisms and Cellulose Digestion in the Gut of the Woodlouse Porcellio scaber

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In the common woodlouse Porcellio scaber different parts of the gut were observed with respect to microbial counts, cellulose activity, and degradation of cellulose. Cellulose is mainly digested in the anterior part of the hindgut, as was indicated by the distribution of cellulolytic activity and the decrease of cellulose content inside the gut. The cellulases woodlice utilize for the degradation of litter are mainly produced by endosymbiotic bacteria in the hepatopancreas rather than by microorganisms ingested with the food. Microorganisms ingested with the litter are digested in the anterior part of the hindgut and may provide an important food source. In the posterior hindgut, bacterial proliferation ensures microbial colonization of feces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Alikhan, M. A. 1969. The physiology of the woodlouse, Porcellio laevis Latreille (Porcellionidae, Peracarida)—I: Studies on the gut epithelium cytology and its relation to the maltase secretion. Can. J. Zool. 47:65–75.

    Google Scholar 

  • Biwer, A. 1961. Quantitative Untersuchungen über die Bedeutung der Asseln und der Bakterien für die Fallaubzersetzung unter Berücksichtigung der Wirkung künstlicher Düngemittelzusätze. Z. Angew. Entomol. 48:307–328, 377–394.

    Google Scholar 

  • Cameron, G. N., and LaPoint, T. W. 1978. Effects of tannins on the decomposition of Chinese tallow leaves by terrestrial and aquatic invertebrates. Oecologia 32:349–366.

    Google Scholar 

  • Coughtrey, P. J., Martin, M. H., Chard, J., and Shales, S. W. 1980. Micro–organisms and metal retention in the woodlouse Oniscus asellus. Soil Biol. Biochem. 12:23–27.

    Google Scholar 

  • Daniel, O., and Anderson, J. M. 1992. Microbial biomass and activity in contrasting soil materials after passage through the gut of the earthworm Lumbricus rubellus Hoffmeister. Soil Biol. Biochem. 24:465–470.

    Google Scholar 

  • Francisco, D. E., Mah, R. A., and Rabin, A. C. 1973. Acridine orange–epifluorescence technique for counting bacteria in natural waters. Trans. Am. Microsc. Soc. 93:416–421.

    Google Scholar 

  • Greenaway, P., and Linton, S. M. 1995. Dietary assimilation and food retention time in the herbivorous terrestrial crab Gecarcoidea natalis. Physiol. Zool. 68:1006–1028.

    Google Scholar 

  • Griffiths, B. S., and Wood, S. 1985. Microorganisms associated with the hindgut of Oniscus asellus (Crustacea, Isopoda). Pedobiologia 28:377–381.

    Google Scholar 

  • GrÜnwald, M. 1987. Adaption und Dekompositionsleistung von Landasseln (Isopoda, Oniscidea) an Standorten der Grossen Brennessel (Urtica dioica, L.). Hochschulsammlung Nat. Wiss. Biol. 20:Dissertation, Bayreuth, Germany.

    Google Scholar 

  • Gunnarsson, T., and Tunlid, A. 1986. Recycling of fecal pellets in isopods: microorganisms and nitrogen compounds as potential food for Oniscus asellus L. Soil. Biol. Biochem. 18:595–600.

    Google Scholar 

  • Hames, C. A. C., and Hopkin, S. P. 1989. The structure and function of the digestive system of terrestrial isopods. J. Zool. 217:599–627.

    Google Scholar 

  • Hanlon, R. D. G. 1981. Some factors influencing microbial growth on soil animal faeces. Pedobiologia 21:257–263, 264–270.

    Google Scholar 

  • Hartenstein, R. 1964. Feeding, digestion, glycogen, and the environmental conditions of the digestive system of Oniscus asellus. J. Insect Physiol. 10:611–621.

    Google Scholar 

  • Hassall, M., and Jennings, J. B. 1975. Adaptive features of gut structure and digestive physiology in the terrestrial isopod Philoscia muscorum (Scopoli 1763). Biol. Bull. 149:348–364.

    Google Scholar 

  • Hassall, M., and Rushton, S. P. 1984. Feeding behaviour of terrestrial isopods in relation to plant defences and microbial activity. Symp. Zool. Soc. London 53:487–505.

    Google Scholar 

  • Hassall, M., and Rushton, S. P. 1985. The adaptive significance of coprophagous behaviour in the terrestrial isopod Porcellio scaber. Pedobiologia 28:169–175.

    Google Scholar 

  • Kozlovskaja, L. S., and Striganova, B. R. 1977. Food, digestion and assimilation in desert woodlice and their relations to the soil microflora. Ecol. Bull. 25:240–245.

    Google Scholar 

  • KriŠtufek, V., Ravasz, K., and Pizl, V. 1992. Changes in densities of bacteria and microfungi during gut transit in Lumbricus rubellus and Aporrectodea caliginosa (Oligochaeta: Lumbricidae). Soil Biol. Biochem. 24:1499–1500.

    Google Scholar 

  • KriŠtufek, V., Pizl, V., and Ravasz, K. 1995. Epifluorescent microscopy of earthworms' intestinal bacteria. Acta Microbiol. Immunol. Hung. 42:39–44.

    Google Scholar 

  • Kukor, J. J., and Martin, M. M. 1986. The effect of acquired microbial enzymes on assimilation efficiency in the common woodlouse, Tracheoniscus rathkei. Oecologia 69:360–366.

    Google Scholar 

  • Lane, R. L. 1988. The digestive system of Porcello scaber Latreille, 1804 (Isopoda, Oniscoidea): histology and histochemistry. Crustaceana 55:113–128.

    Google Scholar 

  • Margulis, L. 1981. Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth. Freeman, San Francisco.

    Google Scholar 

  • MÁrialigeti, K., JÁger, K., SzabÓ, I. M., Pobozsny, M., and Dzingov, A. 1984. The faecal actinomycete flora of Protracheoniscus amoenus (Woodlice; Isopoda). Acta Microbiol. Hung. 31:339–344.

    Google Scholar 

  • Martin, M. M. 1983. Cellulose digestion in insects. Comp. Biochem. Physiol. 75A:313–324.

    Google Scholar 

  • Price, P. W. 1991. The web of life: Development over 3.8 billion years of trophic relationships, pp. 263–272, in L. Margulis and R. Fester (eds.). Symbiosis as a Source of Evolutionary Innovation. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Ray, D. L. 1959. Marine fungi and wood borer attack. Proc. Am. Wood Preserv. Assoc. 54:1–7.

    Google Scholar 

  • Ray, D. L., and Julian, J. R. 1952. Occurrence of cellulase in Limnoria. Nature 169:32.

    Google Scholar 

  • Reyes, V. G., and Tiedje, J. M. 1976. Ecology of the gut microbiota of Tracheoniscus rathkii (Crustacea, Isopoda). Pedobiologia 16:67–74.

    Google Scholar 

  • Scrivener, A. M., and Slaytor, M. 1994. Properties of the endogenous cellulase from Panestia cribrata Saussure and purification of major endo–β–1,4–glucanase components. Insect Biochem. Mol. Biol. 24:223–231.

    Google Scholar 

  • Skambracks, D. 1996. The significance of saprophagous earthworms on nutrient cycling in forest soil. PhD thesis (text in German). University of Cologne, Germany.

    Google Scholar 

  • Slaytor, M. 1992. Cellulose digestion in termites and cockroaches: What role do symbionts play? Comp. Biochem. Physiol. 103B:775–784.

    Google Scholar 

  • Storch, V. 1987. Microscopic anatomy and ultrastructure of the stomach of Porcellio scaber (Crustacea, Isopoda). Zoomorphology 106:301–311.

    Google Scholar 

  • Storch, V., and Štrus, J. 1989. Microscopy anatomy ultrastructure of the alimentary canal in terrestrial isopods. Monit. Zool. Ital. (NS) Monogr. 4:105–126.

    Google Scholar 

  • Teather, R. M., and Wood, P. J. 1982. Use of Congo red–polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43:777–780.

    Google Scholar 

  • Treves, D. S., and Martin, M. M. 1994. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat, Thermobia domestica (Zygentoma, Lepismatidae). J. Chem. Ecol. 20:2003–2020.

    Google Scholar 

  • Uesbeck, M., and Topp, W. 1995. The effect of leaf litter, microorganisms and Collembola on the food allocation of Oniscus asellus, pp. 121–132, in M. A. Alikhan (ed.). Crustacean Issues 9: Terrestrial Isopod Biology. Balkema, Rotterdam.

    Google Scholar 

  • Ullrich, B., Storch, V., and Schairer, H. 1991. Bacteria on the food, in the intestine and on the faeces of the woodlouse Oniscus asellus (Crustacea, Isopoda). Pedobiologia 35:41–51.

    Google Scholar 

  • Wood, S., and Griffiths, B. S. 1988. Bacteria associated with the hepatopancreas of the woodlice Oniscus asellus and Porcellio scaber (Crustacea, Isopoda). Pedobiologia 31:89–94.

    Google Scholar 

  • Wood, T. M., and Garcia–Campayo, V. 1990. Enzymology of cellulose degradation. Biodegradation 1:147–161.

    Google Scholar 

  • Zimmer, M. 1998. Interactions of representatives of the saprophagous soil macrofauna and saprotrophic microorganisms. (text in German). Cuvillier, Göttingen.

    Google Scholar 

  • Zimmer, M., and Topp, W. 1997a. Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea: Isopoda)? Biol. Fertil. Soils 24:435–441.

    Google Scholar 

  • Zimmer, M., and Topp, W. 1997b. Homeostatic responses in the gut of Porcellio scaber (Isopoda: Oniscidea) optimize litter degradation. J. Comp. Physiol. B 167:582–585.

    Google Scholar 

  • Zimmer, M., and Topp, W. 1998. Do woodlice (Isopoda: Oniscidea) produce endogenous cellulases? Biol. Fertil. Soils 26:155–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmer, M., Topp, W. Microorganisms and Cellulose Digestion in the Gut of the Woodlouse Porcellio scaber . J Chem Ecol 24, 1397–1408 (1998). https://doi.org/10.1023/A:1021235001949

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021235001949

Navigation