Skip to main content
Log in

Finitary Čech-de Rham Cohomology

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The present paper continues (Mallios & Raptis, International Journal of Theoretical Physics, 2001, 40, 1885) and studies the curved finitary spacetime sheaves of incidence algebras presented therein from a Čech cohomological perspective. In particular, we entertain the possibility of constructing a nontrivial de Rham complex on these finite dimensional algebra sheaves along the lines of the first author's axiomatic approach to differential geometry via the theory of vector and algebra sheaves (Mallios, Geometry of Vector Sheaves: An Axiomtic Approach to Differential Geometry, Vols. 1–2, Kluwer, Dordrecht, 1998a; Mathematica Japonica (International Plaza), 1998b, 48, 93). The upshot of this study is that important “classical” differential geometric constructions and results usually thought of as being intimately associated with C-smooth manifolds carry through, virtually unaltered, to the finitary-algebraic regime with the help of some quite universal, because abstract, ideas taken mainly from sheaf-cohomology as developed in Mallios (1998a,b). At the end of the paper, and due to the fact that the incidence algebras involved have been interpreted as quantum causal sets (Raptis, International Journal of Theoretical Physics, 2000, 39, 1233; Mallios & Raptis, 2001), we discuss how these ideas may be used in certain aspects of current research on discrete Lorentzian quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alexandrov, P. S. (1956). Combinatorial Topology, Vol. 1, Greylock, Rochester, New York.

    Google Scholar 

  • Alexandrov, P. S. (1961). Elementary Concepts of Topology, Dover Publications, New York.

    Google Scholar 

  • Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D 7, 2333.

    Google Scholar 

  • Böhm, A. (1979). Quantum Mechanics, Springer-Verlag, Berlin.

    Google Scholar 

  • Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987). Space-time as a causal set. Physical Review Letters 59, 521.

    Google Scholar 

  • Bott, R. and Tu, L. W. Differential Forms in Algebraic Topology, (1981).Springer, Berlin, Graduate Text in Mathematics, Vol. 82.

    Google Scholar 

  • Bourbaki, N. (1967). Elements of Mathematics: General Topology 4th edn., Vol. 3(Translated from French), Addison-Wesley, Reading, MA.

  • Breslav, R. B., and Zapatrin, R. R. (2000). Differential structure of Greechie logics. International Journal of Theoretical Physics 39, 1027. quant-ph/9903011.

    Google Scholar 

  • Breslav, R. B., Parfionov, G. N., and Zapatrin, R. R. (1999). Topology measurement within the histories approach, Hadronic Journal 22, 225. quant-ph/9903011.

    Google Scholar 

  • Butterfield, J. and Isham, C. J. (1998).Atopos perspective on theKochen–Specker the-orem: I. Quantum states as generalized valuations, International Journal of The-oretical Physics 37, 2669.

    Google Scholar 

  • Butterfield, J. and Isham, C. J. (1999). A topos perspective on the Kochen–Specker the-orem: II. Conceptual aspects and classical analogues, International Journal of Theoretical Physics 38, 827.

    Google Scholar 

  • Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity, Foundations of Physics 30, 1707. grqc/9910005.

    Google Scholar 

  • Butterfield, J., Hamilton, J., and Isham, C. J. (2000). A topos perspective on the Kochen–Specker theorem: III. Von Neumann algebras as the base category, International Journal of Theoretical Physics 39, 2667. quant-ph/9911020.

    Google Scholar 

  • Connes, A. (1994). Noncommutative Geometry, Academic Press, New York.

    Google Scholar 

  • Crane, L. (1995). Clock and category: Is quantum gravity algebraic?, Journal of Mathematical Physics 36, 6180.

    Google Scholar 

  • Dimakis, A. and M¨uller-Hoissen, F. (1999). Discrete Riemannian geometry, Journal of Mathematical Physics 40, 1518.

    Google Scholar 

  • Dimakis, A., M¨uller-Hoissen, F., and Vanderseypen, F. (1995). Discrete differential manifolds and dynamics of networks, Journal of Mathematical Physics 36, 3771.

    Google Scholar 

  • Dubuc, E. J. (1979). Sur le mod`eles de la g´eometri´e diff´erentielle synth´etique, Cahiers de Topologie et Geometrie Diff´erentielle 20, 231.

    Google Scholar 

  • Dubuc, E. J. (1981). C1 schemes, American Journal of Mathematics 103, 683.

    Google Scholar 

  • Dugundji, J. (1966). Topology, Allyn and Bacon, Boston.

    Google Scholar 

  • Eilenberg, S. and Steenrod, N. (1952). Foundations of Algebraic Topology, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Einstein, A. (1924/1991). Ñber den Äther. Schweizerische Naturforschende Gesellschaft Verhanflungen 105, 85. English translation by Simon Saunders, On the ether. In The Philosophy of Vacuum, H. Brown and S. Saunders, eds., Clarendon Press, Oxford.

    Google Scholar 

  • Einstein, A. (1936). Physics and reality, Journal of the Franklin Institute 221, 313.

    Google Scholar 

  • Einstein, A. (1950). Out of My Later Years, Philosophical Library, New York.

    Google Scholar 

  • Einstein, A. (1956). The Meaning of Relativity, Princeton University Press, Princeton, NJ. (3rd extended edition, 1990.)

    Google Scholar 

  • Finkelstein, D. (1958). Past–future asymmetry of the gravitational field of a point particle, Physical Review 110, 965.

    Google Scholar 

  • Finkelstein, D. (1988). “Superconducting” causal nets, International Journal of Theoretical Physics 27, 473.

    Google Scholar 

  • Finkelstein, D. R. (1996). Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg, Springer-Verlag, Berlin.

    Google Scholar 

  • Geroch, R. (1968a). What is a singularity in general relativity?, Annals of Physics 48, 526.

    Google Scholar 

  • Geroch, R. (1968b). Local characterization of singularities in general relativity, Journal of Mathematical Physics 9, 450.

    Google Scholar 

  • Geroch, R. (1972). Einstein algebras, Communications in Mathematical Physics 26, 271.

    Google Scholar 

  • Hawking, S. W. (1975). Particle creation by black holes, Communications in Mathematical Physics 43, 199.

    Google Scholar 

  • Hawking, S. W. (1976). Black holes and thermodynamics, Physical Review D 13, 191.

    Google Scholar 

  • Isham, C. J. (1997). Topos theory and consistent histories: The internal logic of the set of all consistent sets, International Journal of Theoretical Physics 36, 785.

    Google Scholar 

  • Kastler, D. (1986). Introduction to Alain Connes’ non-commutative differential geometry. In Fields and Geometry 1986: Proceedings of the XXIInd Winter School and Workshop of Theoretical Physics, Karpacz, Poland, A. Jadczyk, ed., World Scientific, Singapore. Lavendhomme, R. (1996). Basic Concepts of Synthetic Differential Geometry, Kluwer, Dordrecht.

    Google Scholar 

  • Mallios, A. (1992). On an abstract form of Weil's integrality theorem, Note di Matematica 12, 167

    Google Scholar 

  • Mallios, A. (1998a). Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, Vols.1–2, Kluwer, Dordrecht.133

    Google Scholar 

  • Mallios, A. (1988b). On an axiomatic treatment of differential geometry via vector sheaves. Applications, Mathematica Japonica(International Plaza), 48, 93. Invited paper.

    Google Scholar 

  • Mallios, A. (1999). On an axiomatic approach to geometric prequantization: A classification scheme `a la Kostant–Souriau–Kirillov, Journal of Mathematical Sciences(New York), 95, 2648. Invited paper.

    Google Scholar 

  • Mallios, A. (2001). K-Theory of topological algebras and second quantization. Extended paper version of a homonymous talk delivered at the International Conference on Topological Algebras and Applications, Oulu, Finland.

    Google Scholar 

  • Mallios, A. (in press). Abstract differential geometry, general relativity and singularities. In Unsolved Problems in Mathematics for the 21st Century: A Tribute to Kiyoshi Iseki's 80th Birthday, IOS Press, Amsterdam. Invited paper.

  • Mallios, A. (in preparation). Gauge theories from the point of view of abstract differential geometry, 2-volume work, continuation of Mallios (1998a).

  • Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality, International Journal of Theoretical Physics 40, 1885. gr-qc/0102097.

    Google Scholar 

  • Mallios, A. and Raptis, I. (2002a). C1-smooth singularities: Chimeras of the spacetime manifold.

  • Mallios, A. and Raptis, I. (2002b). Finitary, causal, and quantal vacuum Einstein gravity. Preprint gr-gc/0209048.

  • Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions and de Rham cohomology, Acta Applicandae Mathematicae 55, 231.

    Google Scholar 

  • Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology, Acta Applicandae Mathematicae, 67, 59.

    Google Scholar 

  • Manin, Yu. I., (1988). Gauge Theory and Complex Geometry, Springer-Verlag, Berlin.

    Google Scholar 

  • O'Donnell, C. J. and Spiegel, E. (1997). Incidence Algebras, Marcel Dekker, New York. Monographs and Textbooks in Pure and Applied Mathematics.

    Google Scholar 

  • Penrose, R. (1977). Space-time singularities. In Proceedings of the First Marcel Grossmann Meeting on General Relativity, North-Holland, Amsterdam.134

    Google Scholar 

  • Raptis, I. (2000a). Algebraic quantization of causal sets, International Journal of Theoretical Physics 39, 1233. gr-qc/9906103.

    Google Scholar 

  • Raptis, I. (2000b). Finitary spacetime sheaves, International Journal of Theoretical Physics 39, 1703. gr-qc/0102108.

    Google Scholar 

  • Raptis, I. (2001a). Non-commutative topology for curved quantum causality. Pre-print. gr-qc/0101082.

  • Raptis, I. (2001b). Presheaves, sheaves and their topoi in quantum gravity and quantum logic.Paper version of a talk titled “Reflections on a possible ‘quantum topos’ structure where curved quantum causality meets ‘warped’ quantum logic” given at the 5th biannual International Quantum Structures Association Conference, in Cesena, Italy, (March–April 2001). Preprint: gr-gc/0110064. Raptis, I. (submitted) Sheafifying consistent histories. Preprint quant-ph/0107037.

  • Raptis, I. and Zapatrin, R. R. (2000). Quantization of discretized spacetimes and the correspondence principle, International Journal of Theoretical Physics 39, 1. gr-qc/9904079.

    Google Scholar 

  • Raptis, I. and Zapatrin, R. R. (2001). Algebraic description of spacetime foam, Classical and Quantum Gravity 20, 4187. gr-qc/0102048.

    Google Scholar 

  • Regge, T. (1961). General relativity without coordinates, Nuovo Cimento 19, 558.

    Google Scholar 

  • Rideout, D. P. and Sorkin, R. D. (2000).Aclassical sequential growth dynamics for causal sets, Physical Review D, 61, 024002. gr-qc/9904062.

    Google Scholar 

  • Rota, G.-C. (1968). On the foundation of combinatorial theory, I. The theory of Möbius functions, Zeitschrift fur Wahrscheinlichkeitstheorie 2, 340.

    Google Scholar 

  • Selesnick, S. A. (1983). Second quantization, projective modules, and local gauge invariance, International Journal of Theoretical Physics 22, 29.

    Google Scholar 

  • Simms, D. J. and Woodhouse, N. M. J. (1976). Lectures on Geometric Quantization, Springer, Berlin. Lecture Notes in Physics Vol. 53.

    Google Scholar 

  • Solian, A. (1977). Theory of Modules: An Introduction to the Theory of Module Categories(Translated from the Romanian by Mioara Buiculescu), Wiley, London.

    Google Scholar 

  • Sorkin, R. D. (1990a). Does a discrete order underlie spacetime and its metric? In Proceedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics, F. Cooperstock, and B. Tupper, eds., World Scientific, Singapore.

    Google Scholar 

  • Sorkin, R. D. (1990b). Spacetime and causal sets. In Proceedings of the SILARG VII Conference, Cocoyoc, Mexico, preprint.

  • Sorkin, R. D. (1991). Finitary substitute for continuous topology, International Journal of Theoretical Physics 30, 923.

    Google Scholar 

  • Sorkin, R. D. (1995). A specimen of theory construction from quantum gravity. In The Creation of Ideas in Physics, J. Leplin, ed., Kluwer, Dordrecht.

    Google Scholar 

  • Sorkin, R. D. (1997). Forks in the road, on the way to quantum gravity. Talk given at the symposium on Directions in General Relativity, University of Maryland, College Park in May 1993 in the honour of Dieter Brill and Charles Misner. gr-qc/9706002.

  • Sorkin, R. D. (in preparation). The causal set as the deep structure of spacetime. 134 And extensive references about singularities and their theorems there.

  • Souriau, J. M. (1977). Geometric quantization and general relativity. In Proceedings of the First Marcel Grossmann Meeting on General Relativity, North-Holland, Amsterdam.

    Google Scholar 

  • Stachel, J. (1991). Einstein and quantum mechanics.In Conceptual Problems of Quantum Gravity, Ashtekar, A. and Stachel, J. eds., Birkhäuser, Boston.

    Google Scholar 

  • Stanley, R. P. (1986). Enumerative Combinatorics, Wadsworth and Brooks, Monterey, CA.

    Google Scholar 

  • Strooker, J. R. (1978). Introduction to Categories, Homological Algebra and Sheaf Cohomology, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • von Westenholz, C. (1981). Differential Forms in Mathematical Physics, North-Holland, Amsterdam.

    Google Scholar 

  • Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In Complexity, Entropy and the Physics of Information, W. H. Zurek, ed., Addison-Wesley, Reading, MA.

    Google Scholar 

  • Woodhouse, N. M. J. (1997). Geometric Quantization, 2nd ed., Clarendon Press, Oxford.

    Google Scholar 

  • Zapatrin, R. R. (1993). Pre-Regge calculus: Topology via logic, International Journal of Theoretical Physics 32, 779.

    Google Scholar 

  • Zapatrin, R. R. (1998). Finitary algebraic superspace, International Journal of Theoretical Physics 37, 799.

    Google Scholar 

  • Zapatrin, R. R. (to appear). Incidence algebras of simplicial complexes. Pure Mathematics and its Applications. math. CO/0001065.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Raptis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallios, A., Raptis, I. Finitary Čech-de Rham Cohomology. International Journal of Theoretical Physics 41, 1857–1902 (2002). https://doi.org/10.1023/A:1021000806312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021000806312

Navigation