Skip to main content
Log in

Thermodynamic Evaluation of the Dynamic Elastic Limit of Metals

  • Published:
Inorganic Materials Aims and scope

Abstract

Given that the plastic state of substances is similar to the liquid state, the work of plastic deformation is assumed to be proportional to the heat of melting. An equation is derived which relates the dynamic elastic limit to the volume change upon “mechanical melting.” The proportionality coefficient in this equation is determined by the degree of fragmentation of crystalline grains (shock-compression rate). The use of microscopic atomic rigidity characteristics makes it possible to derive a universal formula for calculating the elastic limit with a reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry: Findings and Relationships), Moscow: Mosk. Gos. Univ., 2000, p. 292.

    Google Scholar 

  2. Batsanov, S.S. and Bokarev, V.P., On the Fragmentation Limit of Crystalline Inorganic Substances, Izv. Akad.Nauk SSSR, Neorg. Mater., 1980, vol. 16, no. 9, pp. 1650–1652.

    Google Scholar 

  3. Batsanov, S.S. and Zolotova, E.S., Shock-Compression Synthesis of Chromium Chalcogenides, Dokl. Akad.Nauk SSSR, 1968, vol. 180, no. 1, pp. 93–94.

    Google Scholar 

  4. Mashimo, T., Effects of Shock Compression on Ceramic Materials, High-Pressure Shock Compression of Solids, Davidson, L. and Shahinpoor, M., Eds., New York: Springer, 1998, pp. 101–146.

    Google Scholar 

  5. Batsanov, S.S., Effects of Explosions on Materials, New York: Springer, 1994, p. 194.

    Google Scholar 

  6. Villars, P. and Daams, J., Atomic-Environment Classification of the Chemical Elements, J. Alloys Compd., 1993, vol. 197, no. 2, pp. 177–196.

    Google Scholar 

  7. McQuin, R., Marsh, S., Taylor, J., et al., Equation of State of Solids from Shock Compression Studies, in High Velocity Impact Phenomena, New York: Academic, 1971. Translated under the title Vysokoskorostnye udarnye yavleniya, Moscow: Mir, 1973, pp. 299–427.

    Google Scholar 

  8. Duffy, T.S. and Ahrens, T.J., Dynamic Response of Molybdenum Shock Compressed at 1400°C, J. Appl. Phys., 1994, vol. 76, no. 2, pp. 835–842.

    Google Scholar 

  9. Orsky, A.R. and Whitehead, M.A., Electronegativity in Density Functional Theory: Diatomic Bond Energies and Hardness Parameters, Can. J. Chem., 1987, vol. 65, no. 8, pp. 1970–1979.

    Google Scholar 

  10. Batsanov, S.S., Electronegativities of Metal Atoms in Crystalline Solids, Neorg. Mater., 2001, vol. 37, no. 1, pp. 30–37 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 1, pp. 23–30].

    Google Scholar 

  11. Handbook of Chemistry and Physics, Lide, D.R., Ed., New York: CRC, 1995–1996, 76th ed.

    Google Scholar 

  12. Baublitz, M. and Ruoff, A.L., X-ray Diffraction from High Pressure Ge Using Synchrotron Radiation, J. Appl.Phys., 1982, vol. 53, no. 8, pp. 5669–5671.

    Google Scholar 

  13. Quadri, S.B., Skelton, E.F., and Webb, A.W., High Pressure Studies of Ge Using Synchrotron Radiation, J. Appl.Phys., 1983, vol. 54, no. 6, pp. 3609–3611.

    Google Scholar 

  14. Hu, J.Z. and Spain, I.L., Phase of Silicon at High Pressure, Solid State Commun., 1984, vol. 51, no. 5, pp. 263-266.

    Google Scholar 

  15. Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L., Crystal Data for High-Pressure Phases of Silicon, Phys.Rev. B: Condens. Matter, 1986, vol. 34, no. 7, pp. 4679-4682.

    Google Scholar 

  16. Tonkov, E.Yu., Fazovye prevrashcheniya soedinenii pri vysokikh davleniyakh (High-Pressure Phase Transformations of Compounds), Moscow: Metallurgiya, 1988, p. 358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S. Thermodynamic Evaluation of the Dynamic Elastic Limit of Metals. Inorganic Materials 38, 1123–1126 (2002). https://doi.org/10.1023/A:1020962431891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020962431891

Keywords

Navigation