Skip to main content
Log in

Mechanisms of Neuronal Cell Death in Wernicke's Encephalopathy

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Wernicke's Encephalopathy (WE) is a serious neurological disorder resulting from thiamine deficiency, encountered in chronic alcoholics and in patients with grossly impaired nutritional status. Neuropathologic studies as well as Magnetic Resonance Imaging reveal selective diencephalic and brainstem lesions in patients with WE. The last decade has witnessed major advances in the understanding of pathophysiologic mechanisms linking thiamine deficiency to the selective brain lesions characteristic of WE. Activities of the thiamine-dependent enzyme α-ketoglutarate dehydrogenase, a rate-limiting tricarboxylic acid cycle enzyme are significantly reduced in autopsied brain tissue from patients with WE and from rats treated with the central thiamine antagonist, pyrithiamine. In the animal studies, evidence suggests that such enzyme deficits result in focal lactic acidosis, cerebral energy impairment and depolarization resulting from increased release of glutamate in vulnerable brain structures. It has been proposed that this depolarization may result in N-Methyl-D-Aspartate receptor-mediated excitotoxicity as well as increased expression of immediate early genes such as c-fos and c-jun resulting in apoptotic cell death. Other mechanisms involved in thiamine deficiency-induced cell loss may involve free radicals and alterations of the blood-brain barrier. Additional studies are still required to identify the site of the initial cellular insult and to explain the predilection of diencephalic and brainstem structures due to thiamine deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Aikawa, H., Watanabe, I.S., Furuse, T., Iwasaki, Y., Satoyoshi, E., Sumi, T., and Moroji, T. (1984). Low energy levels in thiamine-deficient encephalopathy. J. Neuropath. Exp. Neurol. 43:276–287.

    PubMed  Google Scholar 

  • Armstrong-James, M., Ross, D.T., Chen, F., and Ebner, F.F. (1988). The effect of thiamine deficiency on the structure and physiology of the rat forebrain. Metab. brain Dis. 3:91–124.

    PubMed  Google Scholar 

  • Au, A.M., Chan, P.H., and Fishman, R.A. (1985). Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries. J. Cell Biochem. 27:449–453.

    PubMed  Google Scholar 

  • Avdulov, N.A., Chochina, S.V., Igbavboa, U., O'Hare, E.O., Schroeder, F., Cleary, J.P., and Wood, W.G. (1997). Amyloid β-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. Neurochem. 68:2086–2091.

    Google Scholar 

  • Bartel, D.P., Sheng, M., Lau, L.F., and Greenberg, M.E. (1989). Growth factors and membrane depolarization activate distinct programs of early response gene expression: dissociation of fos and jun induction. Genes Dev. 3:304–313.

    PubMed  Google Scholar 

  • Benavides, J., Fage, D., Carter, C., and Scatton, B. (1987). Peripheral-type benzodiazepine binding sites are a sensitive index of neuronal damage. Brain Res. 421:167–172.

    Article  PubMed  Google Scholar 

  • Bettendorff, L., Sluse, F., Goessens, G., Wins, P., and Grisar, T. (1995). Thiamine deficiency-induced partial necrosis and mitochondrial uncoupling in neurobalstoma cells are rapidly reversed by addition of thiamine. J. Neurochem. 65:2178–2184.

    PubMed  Google Scholar 

  • Blanc, E.M., Toborek, M., Mark, R.J., Hennig, B., and Mattson, M.P. (1997). Amyloid β-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. J. Neurochem. 68:1870–1881.

    PubMed  Google Scholar 

  • Brightman, M.W. (1977). Morphology of blood-brain interfaces. Exp. Eye Res. (Suppl) 25:1–25.

    Article  Google Scholar 

  • Butterworth, R.F. (1982). Neurotransmitter function in thiamine-deficiency encephalopathy. Neurochem Int 4:449–464.

    Article  Google Scholar 

  • Butterworth, R.F. and Héroux, M. (1989). Effect of pyrithiamine treatment and subsequent thiamine rehabilitation on regional cerebral amino acids and thiamine-dependent enzymes. J. Neurochem. 52:1079–1084.

    PubMed  Google Scholar 

  • Butterworth, R.F., Giguère, J.F., and Besnard, A.M. (1985). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 1. The pyruvate dehydrogenase complex. Neurochem. Res. 10:1417–1428.

    PubMed  Google Scholar 

  • Butterworth, R.F., Giguère, J.F., and Besnard, A.M. (1986). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. αketoglutarate dehydrogenase. Neurochem. Res. 11:567–577.

    PubMed  Google Scholar 

  • Butterworth, R.F., Gaudreau, C., Vincelette, J., Bourgault, A.M., Lamothe, F., and Nutini, A.M. (1991). Thiamine deficiency and Wernicke's encephalopathy in AIDS. Metab. Brain Dis. 6:207–212.

    PubMed  Google Scholar 

  • Butterworth, R.F., Kril, J.J., and Harper, C.G. (1993). Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome. Alcohol.Clin. Exp. Res. 17:1084–1088.

    PubMed  Google Scholar 

  • Calingasan, N., Baker, H., Sheu, K-F.R., Gibson, G.E. (1995a). Blood-brain abnormalities in vulnerable brain regions during thiamine deficiency. Exp. Neurol. 134: 64–72.

    Article  PubMed  Google Scholar 

  • Calingasan, N.Y., Gandy, S.E., Baker, H., Sheu, K-F.R., Kim, K-S., Wisniewski, H.M., and Gibson, G.E. (1995b). Accumulation of amyloid precursor protein-like immunoreactivity in rat brain in response to thiamine deficiency. Brain Res. 677:50–60.

    Article  PubMed  Google Scholar 

  • Calingasan, N.Y., Gandy, S.E., Baker, H., Sheu, K-F.R., Smith, J.D., Lamb, B.T., et al. (1996). Novel neuritic clusters with accumulations of amyloid precursor protein and amyloid precursor-likeprotein 2 immunoreactivity in brain regions damaged by thiamine deficiency. Am. J. Pathol. 149:1063–1071.

    PubMed  Google Scholar 

  • Calingasan, N., Park, L.C.H., Calo, L.L., Trifiletti, R.R., Gandy, S.E., and Gibson, G.E. (1998). Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am. J. Path., in press.

  • Chan, P.H., Schmidley, J.W., Fishman, R.A., and Longar, S.M. (1984). Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology 34:315–320.

    PubMed  Google Scholar 

  • Charness, M.E. and Delapaz, R.L. (1987). Mammillary body atrophy in Wernicke's encephalopathy: antemortem identification using magnetic resonance imaging. Ann. Neurol. 22:595–600.

    PubMed  Google Scholar 

  • Cheney, D.L., Gubler, C.J., and Jaussi, A.W. (1969) Production of acetylcholine in rat brain following thiamine deprivation and treatment with thiamine antagonists. J. Neurochem. 16:1283–1291.

    PubMed  Google Scholar 

  • Collins, G.H. (1967). Glial cell changes in the brainstem of thiamine-deficient rats. Am. J. Pathol. 50: 91–814.

    Google Scholar 

  • Colotta, F., Polentarutti, N., Sironi, M., and Mantovani, A. (1992). Expression of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J. Biol. Chem. 267:18278–18283.

    PubMed  Google Scholar 

  • Cooper, J.R. (1968). The role of thiamine in nervous tissue: The mechanism of action of pyrithiamine. Biochim. Biophys. Acta 156: 368–373.

    PubMed  Google Scholar 

  • De Caro, L., Rindi, G., and De Guiseppe, L. (1961). Contents in rat tissue of thiamine and its phosphates during dietary thiamine deficiency. Int. Z. Vitaminforsch. 31: 333–340.

    PubMed  Google Scholar 

  • Del Maestro, R.F., Bjork, J., and Arfors, K-E. (1981). Increase in microvascular permeability induced by enzymatically generated free radicals. Microvasc. Res. 22:255–270.

    Article  PubMed  Google Scholar 

  • Demmel, U., Hock, A., Feinendegen, L.E., and Sebek, P. (1984). Trace elements in brains of patients with alcohol abuse, endogenous pyschosis and schizophrenia. Sci. Total Environ. 38:69–77.

    Article  PubMed  Google Scholar 

  • Diorio, D., Welner, S.A., Butterworth, R.F., Meaney, M.J., and Suranyl-Cadotte, B.E. (1991). Peripheral benzodiazepine binding sites in Alzheimer's disease frontal and temporal cortex. Neurobiol. Aging 12:255–258.

    Article  PubMed  Google Scholar 

  • Dodd, P.R., Kril, J.J., Thomas, G.J., Watson, W.E.J., Johnston, G.A.R., and Harper, C.G. (1996a). Receptor binding sites and uptake activities mediating GABA neurotransmission in chronic alcoholics with Wernicke encephalopathy. Brain Res. 710:215–228.

    Article  PubMed  Google Scholar 

  • Dodd, P.R., Thomas, G.J., McCloskey, A., Crane, D.I., and Smith, I.D. (1996b). The neurochemical pathology of thiamine deficiency: GABAA and glutamateNMDA receptor binding sites in a goat model. Metab. Brain Dis. 11:39–54.

    PubMed  Google Scholar 

  • Donnal, J.F., Heinz, E.R., and Burger, P.C. (1990). MR of reversible thalamic lesions in Wernicke syndrome. Am. J. Neuroradiol. 11:893–894.

    PubMed  Google Scholar 

  • Dragunow, M., Young, D., Hughes, P., MacGibbon, G., Lawlor, P., Singleton, K., et al. (1993). Is c-jun involved in nerve cell death following status epilepticus and hypoxic-ischemic injury? Mol. Brain Res. 18: 347–352.

    Article  PubMed  Google Scholar 

  • Dreyfus, P.M. (1962). Clinical application of blood transketolase determinations. N. Engl. J. Med. 267: 596–598.

    Google Scholar 

  • Dreyfus, P.M. (1967). Thiamine Deficiency: Biochemical Lesions and their Clinical Significance. In Wolstenholme, G.E.W. and O'Connor, M. (eds.), Ciba Foundation Study Group No. 28., J. & A. Churchill, London, pp. 103–111.

    Google Scholar 

  • Elnageh, K.M. and Gaitonde, M.K. (1988). Effect of a deficiency of thiamine on brain pyruvate dehydrogenase: Enzyme assay by three different methods. J. Neurochem. 51:1482–1489.

    PubMed  Google Scholar 

  • Estus, S., Zaks, W.J., Freeman, R.S., Gruda, M., Bravo, R., and Johnson, E.M., Jr (1994). Altered gene expression in neurons during programmed cell death: Identification of c-jun as necessary for neuronal apoptosis. J. Cell. Biol. 127:1717–1727.

    Article  PubMed  Google Scholar 

  • Farber, J.L., Chien, K.R., and Mittnacht, R.B. Jr. (1981) The pathogenesis of irreversible cell injury in ischemia. Am. J. Pathol. 102: 71–281.

    Google Scholar 

  • Farde, L., Pauli, S., Litton, J.-E., Halldin, C., Neiman, J., and Sedvall, G. (1994). PET-determination of benzodiazepine receptor binding in studies on alcoholism. Experientia 71:143–153.

    Google Scholar 

  • Forloni, G., Chiesa, R., Smiroldo, S., Verga, L., Salmona, M., Tagliavini, F., and Angeretti, N. (1993). Apoptosis mediated neurotoxicity induced by chronic application of β amyloid fragment 25–35. Neuroreport 4:523–526.

    PubMed  Google Scholar 

  • Gaitonde, M.D., Fayein, N.A., and Johnson, A.L. (1975). Decreased metabolism in vivo of glucose into amino acids of the brain of thiamine-deficient rats after treatment with pyrithiamine. J. Neurochem. 24:1215–1223.

    PubMed  Google Scholar 

  • Gallucci, M., Bozzao, A., Splendiani, A., Masciocchi, C., and Passariello, R. (1990). Wernicke encephalopathy: MR findings in five patients. Am. J. Neuroradiol. 11:887–892.

    PubMed  Google Scholar 

  • Gibson, G., Barclay, L., and Blass, J. (1982) The role of the cholinergic system in thiamin deficiency. Ann. N.Y. Acad. Sci. 378: 382–403.

    PubMed  Google Scholar 

  • Gibson, G.E., Ksiezak-Reding, H., Sheu, K.F.R., Mykytyn, V., and Blass, J.P. (1984). Correlation of enzymatic, metabolic and behavioural deficits in thiamine deficiency and its reversal. Neurochem. Res. 9:803–814.

    PubMed  Google Scholar 

  • Giguère, J.F. and Butterworth, R.F. (1987). Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 3. Transketolase. Neurochem. Res. 12:305–310.

    PubMed  Google Scholar 

  • González-Martín, C., de Deigo, I., Crespo, D., and Fairen, A. (1992). Transient c-fos expression accompanies naturally occurring cell death in the developing interhemispheric cortex of the rat. Dev. Brain Res. 68:83–95.

    Article  Google Scholar 

  • Gubler, C.J. (1968). Enzyme studies in thiamin deficiency. Int. J. Vit. Res. 38:287–303.

    Google Scholar 

  • Gubler, C.J., Adams, B.L., Hammond, B., Yuan, E.C., Guo, S.M., and Bennion, M. (1974). Effect of thiamine deprivation and thiamine antagonists on the level of γ-aminobutyric acid and on 2-oxoglutarate metabolism in rat brain. J. Neurochem. 22:831–836.

    PubMed  Google Scholar 

  • Haas, R.H. (1988). Thiamin and the brain. Ann. Rev. Nutr. 8:483–515.

    Article  Google Scholar 

  • Hakim, A.M. (1984). The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann. Neurol. 16:673–679.

    PubMed  Google Scholar 

  • Hakim, A.M. and Pappius, H.M. (1983). Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency. Ann. Neurol. 13:365–375.

    PubMed  Google Scholar 

  • Hakim, A.M., Carpenter, S., and Pappius, H.M. (1983). Metabolic and histological reversibility of thiamine deficiency. J. Cereb. Blood Flow Metab. 3:468–477.

    PubMed  Google Scholar 

  • Hakim, A.M. and Hogan, M.J. (1991). In-vivo binding of nimodipine in brain: 1. The effect of focal cerebral ischemia. J. Cereb. Blood Flow Metab. 11:762–770.

    PubMed  Google Scholar 

  • Hamilton, W.J., Boyd, J.D., and Mossman, H.W. (1952). Human Embryology. Prenatal Development of Form and Function. 2nd Ed. W. Heffer and Sons, Cambridge.

    Google Scholar 

  • Harata, N. and Iwasaki, Y. (1995). Evidence for early blood-brain barrier breakdown in experimental thiamine deficiency in the mouse. Metab. Brain Dis. 10:565–576.

    Google Scholar 

  • Harper, C. (1979). Wernicke's encephalopathy: a more common disease than realised. J. Neurol. Neurosurg. Psychiat. 42:226–231.

    PubMed  Google Scholar 

  • Harper, C. and Kril, J. (1991). If you drink your brain will shrink. Neuropathological considerations. Alcohol Alcohol. (Suppl.) 1: 375–380.

    Google Scholar 

  • Harper, C., Giles, M., and Finlay-Jones, R. (1986). Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J. Neurol. Neurosurg. Psychiat. 49: 341–345.

    PubMed  Google Scholar 

  • Hazell, A.S. and Hakim, A.M. (1994). Increase in extracellular glutamate concentration is a Ca2+-independent process in the thalamus of the thiamine deficient rat. J. Neurochem. (Suppl) 62: S104.

    Google Scholar 

  • Hazell, A.S., Butterworth, R.F., and Hakim A.M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. J.Neurochem. 61:1155–1158.

    PubMed  Google Scholar 

  • Hazell, A.S. and Butterworth, R.F. (1997). Early alterations in blood-brain barrier permeability to α-aminoisobutyric acid (AIB) during experimental thiamine deficiency. J. Neurochem. (Suppl.) 69:S282.

    Google Scholar 

  • Hazell, A.S., Hakim, A.M., Senterman, M.K., and Hogan, M.J. (1998a). Regional activation of L-type voltage-sensitive calcium channels in experimental thiamine deficiency. J. Neurosci. Res. 52:742–749.

    Article  PubMed  Google Scholar 

  • Hazell, A.S., McGahan, L., Tetzlaff, W., Bedard, A.M., Robertson, G.S., Nakabeppu, Y., and Hakim, A.M. (1998b). Immediate-early gene expression in the brain of the thiamine deficient rat. J. Molec. Neurosci. 10:1–15.

    PubMed  Google Scholar 

  • Heinrich, C.P., Stadler, H., and Weiser, H. (1973). The effect of thiamin deficiency on the acetylcoenzyme-A and acetylcholine levels in the rat brain. J. Neurochem. 21:1273–1281.

    PubMed  Google Scholar 

  • Héroux, M. and Butterworth, R.F. (1988). Reversible alterations of cerebral γ-aminobutyric acid in pyrithiamine-treated rats: Implications for the cerebral pathogenesis of Wernicke's Encephalopathy. J. Neurochem. 51:1221–1226.

    PubMed  Google Scholar 

  • Héroux, M. and Butterworth, R.F. (1995). Regional alterations of thiamine phosphate esters and of thiamine diphosphate-dependent enzymes in relation to function in experimental Wernicke's encephalopathy. Neurochem. Res. 20: 87–93.

    PubMed  Google Scholar 

  • Hirano, A., Kawanami, T., and Liena, J. (1994). Electron microscopy of the blood-brain barrier in disease. Microvasc. Res. Tech. 27:543–556.

    Google Scholar 

  • Hofmann, E., Friedburg, H., Rasenack, J., Ott, D., and Wimmer, B. (1988). Die Wernicke-Enzephalopathie im CT and MR. Fortschr. Röntgenstr. 148:97–98.

    Google Scholar 

  • Holowach, J., Kauffman, F., Ikossi, M.G., Thomas, C., and McDougal, D.B. Jr. (1968). The effects of a thiamine antagonist, pyrithiamine, on levels of selected metabolic intermediates and on activities of thiamine-dependent enzymes in brain and liver. J. Neurochem. 15: 621–631.

    PubMed  Google Scholar 

  • Holthoff, V.A., Koeppe, R.A., Frey, K.A., Penney, J.B., Markel, D.S., Kuhl, D.W., and Young, A.B. (1993). Positron emission tomography measures of benzodiazepine receptors in Huntington's disease. Ann. Neurol. 34:76–81.

    PubMed  Google Scholar 

  • Iadecola, C. (1997). Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 20: 132–139.

    Article  PubMed  Google Scholar 

  • Jenkins, L.W., Becher, D.P., and Coburn, T.H. (1984). A quantitative analysis of glial swelling and ischemic neuronal injury following complete cerebral ischemia. In Go, T.G. and Baethmann, A. (eds.), Recent Progress in the Study and Therapy of Brain Edema, Plenum, New York, pp. 523–537.

    Google Scholar 

  • Johnson, L.R. and Gubler, C.J. (1968). Studies on the physiological functions of thiamine. III. The phosphorylation of thiamine in brain. Biochim. Biophys. Acta 156:85–96.

    PubMed  Google Scholar 

  • Joó, F. (1971). Increased production of coated vesicles in the brain capillaries during enhanced permeability of the blood-brain barrier. Br. J. Exp. Pathol. 52:646–649.

    PubMed  Google Scholar 

  • Junck, L., Olson, J.M.M., Ciliax, B.S., Koeppe. R.A., Watkins, G.L., Jewett, D.M., et al. (1989). PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann. Neurol. 26:752–758.

    PubMed  Google Scholar 

  • Kalimo, H., Rehncrona, S., Söderfeldt, B., Olsson, Y., and Siesjö, B.K. (1981). Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J. Cereb. Blood Flow Metab. 1: 313–327.

    PubMed  Google Scholar 

  • Kessler, R.M., Clark, C.M., Parker, E.S., Martin, P., Sokoloff, L., Ebert, M.H., and Mishkin, M. (1984). Regional cerebral glucose use in patients with alcoholic Korsakoff's syndrome. Clin. Nucl. Med. (Abstr) 9:65.

    Google Scholar 

  • Kimelberg, H.K., Rutledge, E., Goderie, S., and Charniga, C. (1995). Astrocytic swelling due to hypotonic or high K+ medium causes inhibition of glutamate and aspartate uptake and increases their release. J. Cereb. Blood Flow Metab. 15:409–416.

    PubMed  Google Scholar 

  • Kinnersley, H.W. and Peters, R.A. (1930). Brain localization of lactic acidosis in avitaminosis B1 and its relation to the origin of symptoms. Biochem. J. 24: 711–722.

    Google Scholar 

  • Koh, J.-Y., Yang, L.L., and Cotman, C.W. (1990). β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 533:315–320.

    Article  PubMed  Google Scholar 

  • Kril, J.J., Halliday, G.M., Svoboda, M.D., and Cartwright, H. (1997). The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79:983–998.

    Article  PubMed  Google Scholar 

  • Langlais, P.J. and Mair, R.G. (1990). Protective effects of the glutamate antagonist MKB801 on pyrithiamine-induced lesions and amino acid changes in rat brain. J. Neurosci. 10:1664–1674.

    PubMed  Google Scholar 

  • Langlais, P.J. and Zhang, S.X. (1993). Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. J. Neurochem. 61: 2175–2182.

    PubMed  Google Scholar 

  • Langlais, P.J., Anderson, G., Guo, S.X., and Bondy, S.C. (1997). Increased cerebral free radical production during thiamine deficiency. Metab. Brain Dis. 12:137–143.

    Article  PubMed  Google Scholar 

  • Lê, O., Héroux, M., and Butterworth, R.F. (1991). Pyrithiamine-induced thiamine deficiency results in decreased Ca2+-dependent release of glutamate from rat hippocampal slices. Metab. Brain Dis. 6:125–132.

    PubMed  Google Scholar 

  • Leong, D. and Butterworth, R.F. (1994). Neuronal cell death in Wernicke's encephalopathy: pathophysiologic mechanisms and implications for PET imaging. Metab. Brain Dis. 11: 71–79.

    Google Scholar 

  • Leong, D., Lê, O., Oliva, L., and Butterworth, R.F. (1994). Increased densities of binding sites for the "peripheral-type" benzodiazepine receptor ligand [3H]PK11195 in vulnerable regions of the rat brain in thiamine deficiency encephalopathy. J. Cereb. Blood Flow Metab. 14:100–105.

    PubMed  Google Scholar 

  • Leong, D.K. and Butterworth, R.F. (1996). Neuronal cell death in Wernicke's encephalopathy: pathophysiologic mechanisms and implications for PET imaging. Metab. Brain Dis. 11:71–79.

    PubMed  Google Scholar 

  • Lindboe, C.F. and Loberg, E.M. (1989). Wernicke's encephalopathy in non-alcoholics. An autopsy study. J. Neurol. Sci. 90:125–129.

    Article  PubMed  Google Scholar 

  • Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J., and Cotman, C.W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90:7951–7955.

    PubMed  Google Scholar 

  • Lissak, K., Kovacs, T., and Nagy, E.K. (1943). Acetylcholin-und cholinesterasegehalt von organen B1-avitaminotischer und normaler ratten. Pflugers Arch. Ges. Physiol. 247:124–131.

    Google Scholar 

  • Mann, P.J.G. and Quastel, J.H. (1940). Vitamin B1 and acetylcholine formation in isolated brain. Nature 145:856–857.

    Google Scholar 

  • Manz, H.J. and Robertson, D.M. (1972). Vascular permeability to horseradish peroxidase in brainstem lesions of thiamine-deficient rats. Am. J. Pathol. 66:565–576.

    PubMed  Google Scholar 

  • Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R.E. (1992). β-Amyloid peptide destabilized calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389.

    PubMed  Google Scholar 

  • Matsushima, K., MacManus, P., and Hakim, A.M. (1997). Apoptosis is restricted to the thalamus in thiamine-deficient rats. NeuroReport 8:867–870.

    PubMed  Google Scholar 

  • McCandless, D.W. (1982). Energy metabolism in the lateral vestibular nucleus in pyrithiamin induced thiamin deficiency. Ann. NY Acad. Sci. 378:355–364.

    PubMed  Google Scholar 

  • McCandless, D.W. and Schenker, S. (1968). Encephalopathy of thiamine deficiency: Studies of intracerebral mechanisms. J. Clin. Invest. 47:2268–2280.

    PubMed  Google Scholar 

  • McCandless, D.W., Curley, A.D., and Cassidy, C.E. (1976). Thiamine deficiency and the pentose phosphate cycle in rats: Intracerebral mechanisms. J. Nutr. 106:1144–1151.

    PubMed  Google Scholar 

  • McDowell, J.E. and LeBlanc, H.J. (1984). Computed tomographic findings in Wernicke-Korsakoff syndrome. Arch. Neurol. 41:453–454.

    PubMed  Google Scholar 

  • Mensing, J.W.A., Hoogland, P.H., and Sloof, J.L. (1984). Computed tomography in the diagnosis of Wernicke's encephalopathy: a radiological-neuropathological correlation. Ann.Neurol. 16:363–365.

    PubMed  Google Scholar 

  • Merrill, J. and Murphy, S. (1996). Nitric oxide, in The Role of Glia in Neurotoxicity (Aschner, M. and Kimelberg, H.K., eds.), pp 263–281. CRC Press, Boca Raton.

    Google Scholar 

  • Miyajima, Y., Fukuda, M., Kojima, S., Matsuyama, T., Shylaja, N., and Aso, K. (1993). Wernicke's encephalopathy in a child with acute lymphoblastic leukemia. Am. J. Ped. Hemat/Onc. 15:331–334.

    Google Scholar 

  • Moncada, S., Palmer, R.M., and Higgs, E.A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142.

    PubMed  Google Scholar 

  • Morgan, J.I. and Curran, T. (1986). Role of ion flux in the control of c-fos expression. Nature 322:552–555.

    PubMed  Google Scholar 

  • Mosseau, D.D., Rao, V.L.R., and Butterworth, R.F. (1996). Alterations in serotonin parameters in brain of thiamine-deficient rats are evident prior to the appearance of neurological symptoms. J. Neurochem. 67:1113–1123.

    PubMed  Google Scholar 

  • Munujos, P., Vendrell, M., and Ferrer, I. (1993). Proto-oncogene c-fos induction in thiamine-deficient encephalopathy. Protective effects of nicardipine on pyrithiamine-induced lesions. J.Neurol. Sci. 118:175–180.

    Article  PubMed  Google Scholar 

  • Murdock, D.S. and Gubler, C.J. (1973). Effects of thiamine deficiency and treatment with the antagonists, oxythiamine and pyrithiamine, on the levels and distribution of thiamine derivatives in rat brain. J. Nutr. Sci. Vitaminol. 19: 237–249.

    PubMed  Google Scholar 

  • Murphy, S., Minor, R.L., Welk, G., and Harrison, D.G. (1990). Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric oxide. J. Neurochem. 55:349–351.

    PubMed  Google Scholar 

  • Murphy, T.H., Worley, P.F., and Baraban, J.M. (1991). L-type voltage-sensitive calcium channels mediate synaptic activation of immediate-early genes. Neuron 7:625–635.

    Article  PubMed  Google Scholar 

  • Mutch, W.A.C. and Hansen, A.J. (1984). Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J. Cereb. Blood Flow Metab. 4:17–27.

    PubMed  Google Scholar 

  • Myers, R.E. (1979a). Lactic acid accumulation as cause of brain edema and cerebral necrosis resulting from oxygen deprivation. In Korobkin, R. and Guilleminault, G (eds.), Advances in Perinatal Neurology, Spectrum, New York, pp. 85–114.

    Google Scholar 

  • Myers, R.E. (1979b). A unitary theory of causation of anoxic and hypoxic brain pathology. Adv. Neurol. 26:195–213.

    PubMed  Google Scholar 

  • Myers, R., Manjil, L.G., Cullen, B.M., Price, G.W., Frackowiak, S.J. and Cremer, J.E. (1991). Macrophage and astrocyte populations in relation to 3H-PK11195 binding in rat cerebral cortex following a local ischaemic lesion. J. Cereb. Blood Flow Metab. 11:314–322.

    PubMed  Google Scholar 

  • Myers, R. (1993). Mitochondrial benzodiazepine receptor ligands as indicators of damage in the CNS: their application in positron emission tomography. In (E. Giesen-Crouse, ed.) Peripheral Benzodiazepine Receptors. San Diego, Academic Press. pp 235–273.

    Google Scholar 

  • Nose, Y., Iwashima, A., and Nishino, H. (1976). Thiamine uptake by rat brain slices. In Gubler, C.J., Fujiwara, M., and Dreyfus, P.M. (eds.), Thiamine, John Wiley & Sons, New York, pp. 157–168.

    Google Scholar 

  • Novelli, A., Reilly, J.A., Lysko, P.G., Henneberry, R.C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451:205–212.

    Article  PubMed  Google Scholar 

  • Ohkoshi, N., Ishii, A., and Shoji, S. (1994). Wernicke's encephalopathy induced by hyperemesis gravidarum, associated with bilateral caudate lesions on computed tomography and magnetic resonance imaging. Eur. Neurol. 34:177–180.

    PubMed  Google Scholar 

  • Olney, J.W., Oi Lan, H., and Rhee, V. (1971). Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14:61–76.

    Article  PubMed  Google Scholar 

  • Olney, J.W. (1978). Neurotoxicity of excitatory amino acids. In (McGeer, E.G., Olney, J.W., and McGeer, P.L. eds.), Kainic Acid as a Tool in Neurobiology, Raven Press, New York, pp. 95–121.

    Google Scholar 

  • Owen, F., Poulter, M., Waddington, J.L., Mashal, R.D., and Crow, T.J. (1983). 3H-Ro5-4864 and 3H-flunitrazepam binding in kainate-lesioned rat striatum and in temporal cortex of brains from patients with senile dementia of the Alzheimer type. Brain Res. 278:373–375.

    Article  PubMed  Google Scholar 

  • Papadopoulos, V. (1993). Peripheral-type benzodiazepine diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr. Rev. 14:222–240.

    Article  PubMed  Google Scholar 

  • Peters, R.A. (1936). The biochemical lesion in vitamin B1 deficiency. Lancet 1: 1161–1165.

    Article  Google Scholar 

  • Peters, R.A. (1969). The biochemical lesion and its historical development. Br. Med. Bull. 25:223–226.

    PubMed  Google Scholar 

  • Peterson, C., Héroux, M., Lavoie, J., and Butterworth, R.F. (1995). Loss of [3H]kainate and of NMDA-displaceable [3H]glutamate binding sites in brain in thiamine deficiency: results of a quantitative autoradiographic study. Neurochem. Res. 20:1155–1160.

    PubMed  Google Scholar 

  • Phillips, S.C. and Cragg, B.G. (1984). Blood-brain barrier dysfunction in thiamine-deficient, alcohol-treated rats. Acta Neuropathol. (Berl) 62:235–241.

    Google Scholar 

  • Pitella, J.E.H. and Castro, L.P.F. (1990). Wernicke's encephalopathy manifested as Korsakoff's syndrome in a patient with promyelocytic leukemia. South Med. J. 5:570–573.

    Google Scholar 

  • Plum, F. (1983). What causes infarction in ischemic brain? Neurology 33: 222–233.

    PubMed  Google Scholar 

  • Pulsinelli, W.A., Waldman, S., Rawlinson, D., and Plum, F. (1982). Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 32:1239–1246.

    PubMed  Google Scholar 

  • Rao, V.L.R., Mousseau, D.D., and Butterworth, R.F. (1995). A quantitative autoradiographic study of muscarinic cholinergic receptor subtypes in the brains of pyrithiamine-treated rats. Neurochem Res. 20:907–914.

    PubMed  Google Scholar 

  • Rao, V.L.R., Mousseau, D.D., and Butterworth, R.F. (1996). Nitric oxide synthase activities are selectively decreased in vulnerable brain regions in thiamine deficiency. Neurosci. Lett. 208:17–20.

    Article  PubMed  Google Scholar 

  • Raichle, M.E. (1983). The pathophysiology of brain ischemia. Ann. Neurol. 13:2–10.

    PubMed  Google Scholar 

  • Reese, T.S. and Karnovsky, M.J. (1967). Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell. Biol. 34:207–217.

    Article  PubMed  Google Scholar 

  • Reynolds, S.F. and Blass, J.P. (1975). Normal levels of acetyl coenzyme A and of acetylcholine in the brain of thiamin-deficient rats. J. Neurochem. 24: 185–186.

    PubMed  Google Scholar 

  • Rindi, G. and Perri, V. (1961). Uptake of pyrithiamine by tissue of rats. Biochem. J. 80:214–216.

    PubMed  Google Scholar 

  • Rindi, G., De Guiseppe, L., and Ventura, U. (1963). Distribution and phosphorylation of oxythiamine in rat tissues. J. Nutr. 81: 147–154.

    PubMed  Google Scholar 

  • Robertson, D.M., Wasan, S.M., and Skinner, D.B. (1968). Ultrastructural features of early brainstem lesions of thiamine-deficient rats. Am. J. Pathol. 52:1081–1097.

    PubMed  Google Scholar 

  • Robertson, D.M. and Manz, H.J. (1971). Effect of thiamine deficiency on the competence of the blood-brain barrier to albumin labeled with fluorescent dyes. Am. J. Pathol. 63:393–402.

    PubMed  Google Scholar 

  • Roche, S.W., Lane, R.J. and Wade, J.P.H. (1988). Thalamic hemorrhages in Wernicke-Korsakoff syndrome demonstrated by computed tomography. Ann. Neurol. 23:312.

    PubMed  Google Scholar 

  • Sacks, T., Moldow, C.F., Craddock, P.R., Bowers, T.K., and Jacob, H.S. (1978). Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J. Clin. Invest. 61:1161–1167.

    PubMed  Google Scholar 

  • Savic, I., Ingvar, M., and Stone-Elander, S. (1993). Comparison of [11C]-flumazenil and [18F]-FDG as PET markers of epileptic foci. J. Neurol. Neurosurg. Psychiat. 56:615–621.

    PubMed  Google Scholar 

  • Schanne, F.A.X., Kane, A.B., Young, E.E., and Farber, J.L. (1979). Calcium dependence of toxic cell death: A final common pathway. Science 206:701–702.

    Google Scholar 

  • Schoemaker, H., Morelli, M., Deshmukh, P., and Yamamura, H.I. (1982). 3H-Ro5-4864 benzodiazepine binding in the kainate lesioned striatum and Huntington's diseased basal ganglia. Brain Res. 248:396–401.

    Article  PubMed  Google Scholar 

  • Scholz, W. (1949). Histologische und topische Veräanderungen und vulnerabilitätsverhältnisse im menschlichen Gehirn bei Sauerstoffmangel, Odem und plasmatischen Infiltrationen. I. Problemstellung und feingewebliche Situation. Arch. Psychiat. Nervenkr. 181:621–665.

    Google Scholar 

  • Schroth, G., Grodd, W., Guhl, L., Grauer, M., Klose, U., and Niendorf, H.-P. (1987). Magnetic resonance imaging in small lesions of the central nervous system. Improvement by gadolinium-DTPA. Acta Radiol. 28:667–672.

    PubMed  Google Scholar 

  • Schroth, G., Wichmann, W., and Valavanis, A. (1991). Blood-brain barrier disruption in acute Wernicke encephalopathy: MR findings. J. Comp. Assist. Tomog. 15:1059–1061.

    Google Scholar 

  • Shah, N. and Wolff, J.A. (1973). Thiamine deficiency: probable Wernicke's encephalopathy successfully treated in a child with acute lymphocytic leukemia. Pediatrics 43:750–751.

    Google Scholar 

  • Sheng, M., McFadden, G., and Greenberg, M.E. (1990). Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:477–485.

    Article  PubMed  Google Scholar 

  • Sheu, K-F.R., Calingasan, N.Y., Dienel, G.A., Baker, H., Jung, E-H., Kim, K-S., Paoletti, F., and Gibson, G.E. (1996). Regional reductions of transketolase in thiamine-deficient rat brain. J. Neurochem. 67:684–691.

    PubMed  Google Scholar 

  • Shimamura, A.P., Jernigan, T.L., and Squire, L.R. (1988). Korsakoff's syndrome: radiological (CT) findings and neuropsychological correlates. J. Neurosci. 8: 4400–4410.

    PubMed  Google Scholar 

  • Siesjö, B.K. (1985). Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. Prog. Brain Res. 63:121–154.

    PubMed  Google Scholar 

  • Siesjö, B.K. and Bengtsson, F. (1989). Calcium, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: A unifying hypothesis. J. Cereb. Blood Flow Metab. 9:127–141.

    PubMed  Google Scholar 

  • Soffer, D., Zirkin, H., Alkan, M., and Berginer, V.M. (1989). Wernicke's encephalopathy in acquired immune deficiency syndrome (AIDS): a case report. Clin. Neuropathol. 8:192–194.

    PubMed  Google Scholar 

  • Summers, J.A., Pullan, P.T., Kril, J.J., and Harper, C.G. (1991). Increased central immunoreactiove beta-endorphin content in patients with Wernicke-Korsakoff syndrome and in alcoholics. J. Clin. Pathol. 44:126–129.

    PubMed  Google Scholar 

  • Szatkowski, M., Barbour, B., and Attwell, D. (1990). Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446.

    Article  PubMed  Google Scholar 

  • Thomas, G.J., Harper, C.G., and Dodd, P.R. (1998). Expression of GABAA receptor isoform genes in the cerebral cortex of cirrhotic and alcoholic cases assessed by S1 nuclease protection assays. Neurochem. Int. 32:375–385.

    Article  PubMed  Google Scholar 

  • Thompson, S.D. and McGeer, E.G. (1985). GABA-transaminase and glutamic acid decarboxylase changes in the brain of rats treated with pyrithiamine. Neurochem. Res. 10:1653–1660.

    PubMed  Google Scholar 

  • Todd, K.G. and Butterworth, R.F. (1997). Immunohistochemical evidence that superoxide dismutase is upregulated in experimental thiamine deficiency. Soc. Neurosci. Abst. 23:829.

    Google Scholar 

  • Todd, K.G. and Butterworth, R.F. (1998a). Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp. Neurol. 149:130–138.

    Article  PubMed  Google Scholar 

  • Todd, K.G. and Butterworth, R.F. (1998b). Increased neuronal cell survival after L-deprenyl treatment in experimental thiamine deficiency. J. Neurosci. Res., 52:240–246.

    Article  PubMed  Google Scholar 

  • Todd, K.G. and Butterworth, R.F. (1998c). Microglial activation: the initial cellular response in experimental thiamine deficiency. J. Neurochem. (Suppl.) 70: S64.

    Google Scholar 

  • Torvik, A. (1985). Two types of brain lesions in Wernicke's encephalopathy. Neuropath. Appl. Neurobiol. 11:179–190.

    Google Scholar 

  • Troncoso, J.C., Johnston, M.V., Hess, K.M., Griffin, J.W., and Price, D.L. (1981). Model of Wernicke's encephalopathy. Arch. Neurol. 38:350–354.

    PubMed  Google Scholar 

  • Victor, M., Adams, R.D., and Collins, G.H. (1989). The Wernicke-Korsakoff Syndrome and Related Neurologic Disorders due to Alcoholism and Malnutrition. F.A. Davies, Philadelphia.

    Google Scholar 

  • Vorhees, C.V., Schmidt, D.E., Barrett, R.J., and Schenker, S. (1977). Effect of thiamin deficiency on acetylcholine levels and utilization in vivo in rat brain. J. Nutr. 107:1902–1908.

    PubMed  Google Scholar 

  • Vortmeyer, A.O. and Colmant, H.J. (1988). Differentiation between brain lesions in experimental thiamine deficiency. Virchows. Archiv. A. Pathol. Anat. 414:61–67.

    Google Scholar 

  • Warnock, L.G. and Burkhalter, V.J. (1968.) Evidence of malfunctioning blood-brain barrier in experimental thiamine deficiency in rats. J. Nutr. 94:256–260.

    PubMed  Google Scholar 

  • Watanabe, I. (1978). Pyrithiamine-induced acute thiamine-deficient encephalopathy in the mouse. Exp. Mol.Pathol. 28:381–394.

    Article  PubMed  Google Scholar 

  • Watanabe, I. and Kanabe, S. (1978). Early edematous lesion of pyrithiamine induced acute thiamine deficient encephalopathy in the mouse. J. Neuropathol. Exp. Neurol. 37: 01–413.

    Google Scholar 

  • Watanabe, I., Tomita, T., Hung, K-S., and Iwasaki, Y. (1981). Edematous necrosis in thiamine-deficient encephalopathy of the mouse. J. Neuropathol. Exp. Neurol. 40:454–471.

    PubMed  Google Scholar 

  • Wernicke, C. (1881). Lehrbuch der Gehirnkrankheiten fur Aerzte und Studirende, Vol. 2, Theodor Fischer, Kassel, pp. 229–242.

    Google Scholar 

  • Westergaard, E. and Brightman, M.W. (1973). Transport of proteins across cerebral arterioles. J. Comp. Neurol. 152:17–44.

    PubMed  Google Scholar 

  • Witt, E.D. (1985). Neuroanatomical consequences of thiamine deficiency: A comparative analysis. Alcohol Alcoholism 20:201–222.

    Google Scholar 

  • Yankner, B.A., Duffy, L.K., and Kirschner, D.A. (1990). Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250:279–282.

    PubMed  Google Scholar 

  • Yokote, K., Miyagi, K., Kuzuhara, S., Yamanouchi, H., and Yamada, H. (1991). Wernicke encephalopathy: follow-up study by CT and MR. J. Comput. Assist. Tomogr. 15:835–838.

    PubMed  Google Scholar 

  • Yoshida, S., Busto, R., Martinez, E., Scheinberg, P., and Ginsberg, M.D. (1985). Regional brain energy metabolism after complete versus incomplete ischemia in the rat in the absence of severe lactic acidosis. J. Cereb. Blood Flow Metab. 5:490–501.

    PubMed  Google Scholar 

  • Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H., and Lindholm, D. (1990). Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9:3545–3550.

    PubMed  Google Scholar 

  • Zhang, S.X., Weilersbacher, G.S., Henderson, S.W., Corso, T., Olney, J.W., and Langlais, P.J. (1995). Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. J. Neuropathol. Exp. Neurol. 54:255–267.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazell, A.S., Todd, K.G. & Butterworth, R.F. Mechanisms of Neuronal Cell Death in Wernicke's Encephalopathy. Metab Brain Dis 13, 97–122 (1998). https://doi.org/10.1023/A:1020657129593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020657129593

Navigation