Skip to main content
Log in

Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties.

Molecular Breeding Aims and scope Submit manuscript

Abstract

Genetic distances (GDs) based on molecular markers are important parameters for identifying essentially derived varieties (EDVs). In this context information about the variability of molecular markers within maize inbred lines is essential. Our objectives were to (1) determine the variation in the size of simple sequence repeat (SSR) fragments among different accessions of maize inbreds and doubled haploid (DH) lines, (2) attribute the observed variation to genetic and marker system-specific sources, and (3) investigate the effect of SSR fragment size differences within maize lines on the GD between maize lines and their consequences for the identification of essentially derived varieties. Two to five accessions from nine inbred lines and five DH lines were taken from different sources or drawn as independent samples from the same seed lot. Each accession was genotyped with 100 SSR markers that evenly covered the whole maize genome. In total, 437 SSR fragments were identified, with a mean of 4.4 alleles per locus. The average polymorphic information content (PIC) was 0.58. GD estimates between two accessions of the same genotype ranged from 0.00 to 0.12 with an average of 0.029 for inbred lines and 0.001 for DH lines. An average of 11.1 SSRs was polymorphic between accessions of the same inbred line due to non-amplification (8.1 SSRs), heterogeneity (4.0 SSRs) or unknown alleles (2.6 SSRs). In contrast to lab errors, heterogeneity contributed considerably to the observed variation for GD. In order to decrease the probability to be suited for infringing an EDV threshold by chance, we recommend to increase the level of homogeneity of inbred lines before applying for plant variety protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allard R.W. 1999. Principles of Plant Breeding. John Wiley & Sons, New York.

    Google Scholar 

  • ASSINSEL 1999. Consolidation of ASSINSEL position papers on protection of biotechnological inventions and plant varieties.

  • ASSINSEL 2000. DUS testing: Phenotype vs. Genotype. ASSINSEL, Position Paper adopted at the Rome Congress in May 2000.

  • Bernardo R., Murigneux A., Maisonneuve J.P., Johnsson C. and Karaman Z. 1997. RFLP-based estimates of parental contribution to F2 and BC1 derived maize inbreds. Theor. Appl. Genet. 94: 652-656.

    Google Scholar 

  • Botstein D., White R.L., Skolnick M. and Davis R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.

    Google Scholar 

  • Deimling S., Röber F. and Geiger H.H. 1997. Methodology and genetics of in vivo haploid induction in Maize. Vortr. Pflanzenzüchtg. 38: 203-224.

    Google Scholar 

  • Drake J.W., Charlesworth B., Charlesworth D. and Crow J.F. 1998. Rates of spontaneous mutation. Genetics 148: 1667-1686.

    Google Scholar 

  • Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann. Stat. 7: 1-26.

    Google Scholar 

  • Grandillo S., Ku H.M. and Tanksley S.D. 1999. Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99: 978-987.

    Google Scholar 

  • Hatcher S.L., Lambert Q.T., Raymond L.T. and Carlson J.R. 1993. Heteroduplex formation: a potential source of errors from PCR products. Prenatal Diagnosis 13: 171-177.

    Google Scholar 

  • Jones A.G., Rosenqvist G., Berglund A. and Avise J.C. 1999. Clustered microsatellite mutations in the pipefish Syngnathus typhle. Genetics 152: 1057-1063.

    Google Scholar 

  • Jones C.J., Edwards K.J., Castaglione S., Winfield M.O., Sala F., Vandewiel C. et al. 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed. 3: 381-390.

    Google Scholar 

  • Knaak C., Förster J. and Jäger-Gussen M. 1996. "Abgeleitete" Sorten aus praktischer Sicht (in German). Bericht über die 47. Arbeitstagung 1996 der Saatzuchtleiter im Rahmen der "Vereinigung österreichischer Pflanzenzüchter" BAL Gumpenstein: 167-172.

  • Lübberstedt T., Melchinger A.E., Dussle C., Vuylsteke M. and Kuiper M. 2000. Relationships among early European maize inbreds: iv. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci. 40: 783-791.

    Google Scholar 

  • Marhic A., Anatoine-Michard S., Bordes J., Pollacsek M., Murigneux A. and Beckert M. 1998. Genetic improvement of anther culture response in maize: relationships with molecular, mendelian and agronomic traits. Theor. Appl. Genet. 97: 520-525.

    Google Scholar 

  • Marshall T.C., Slate J., Kruuk L.E.B. and Pemberton J.M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655.

    Google Scholar 

  • Murigneux A., Barloy D., Leroy P. and Beckert M. 1993. Molecular and morphological evaluation of doubled haploid lines in maize. 1. Homogeneity within DH lines. Theor. Appl. Genet. 86: 837-842.

    Google Scholar 

  • Nataraj A.J., Olivos-Glander I., Kusukawa N. and Highsmith W.E. 1999. Single-strand conformation polymorphism and heteroduplex analysis for gel-based mutation detection. Electrophoresis 20: 1177-1185.

    Google Scholar 

  • Nei M. and Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Soc. USA 76: 5269-5273.

    Google Scholar 

  • Nei M., Tajima F. and Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 19: 153-170.

    Google Scholar 

  • Palsboll P.J., Berube M. and Jorgensen H. 1999. Multiple Levels of Single-Strand Slippage at Cetacean Tri-and Tetranucleotide Repeat Microsatellite Loci. Genetics 151: 285-296.

    Google Scholar 

  • Pejic I., Ajmone-Marsan P., Morgante M., Kozumplick V., Castiglioni P., Taramino G. et al. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor. Appl. Genet. 97: 1248-1255.

    Google Scholar 

  • Plaschke J., Ganal M.W. and Roder M.S. 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001-1007.

    Google Scholar 

  • Qi X. and Lindhout P. 1997. Development of AFLP markers in barley. Mol. Gen. Genet. 254: 330-336.

    Google Scholar 

  • Rohlf F.J. 1989. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing Co, Ltd, Setauket, NY.

    Google Scholar 

  • Saghai Maroof M.A., Soliman K.M., Jorgensen R.A. and Allard R.W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Soc. USA 81: 8014-8.

    Google Scholar 

  • SAS Institute 1988. SAS/STAT User's Guide, Release 6.03 edn. SAS, Cary.

  • Schloetterer C. and Tautz D. 1992. Slippage synthesis of simple sequence DNA. Nucl. Acids Res. 20: 211-215.

    Google Scholar 

  • Schloetterer C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109: 365-371.

    Google Scholar 

  • Sia E.A., Butler C.A., Dominska M., Greenwell P., Fox T.D. and Petes T.D. 2000. Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae. Proc. Natl. Acad. Soc. USA 97: 250-255.

    Google Scholar 

  • Simmonds N.W. and Smartt J. 1999. Principles of Crop Improvement. Blackwell Science, Oxford.

    Google Scholar 

  • Smith J.S.C., Chin E.C.L., Shu H., Smith O.S., Wall S.J., Senior M.L. et al. 1997. An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.)-comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173.

    Google Scholar 

  • Smith J.S.C., Smith O.S., Bowen S.L., Tenborg R.A. and Wall S.J. 1991. The description and assessment of distances between inbred lines of maize. III. A revised scheme for the testing of distinctiveness between inbred lines utilizing DNA RFLPs. Maydica 36: 213-226.

    Google Scholar 

  • Twerdi C.D., Boyer J.C. and Farber R.A. 1999. Relative rates of insertion and deletion mutations in a microsatellite sequence in cultured cells. Proc. Natl. Acad. Soc. USA 96: 2875-2879.

    Google Scholar 

  • UPOV 1991. International Convention for the Protection of New Varieties of Plants.

  • Yap I.V. and Nelson R.J. 1996. WinBoot: A Program for Performing Bootstrap Analysis of Binary Data to Determine Confidence Limits of UPGMA-Based Dendrograms. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heckenberger, M., Bohn, M., Ziegle, J.S. et al. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties.. Molecular Breeding 10, 181–191 (2002). https://doi.org/10.1023/A:1020539330957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020539330957

Navigation