Skip to main content
Log in

Promotion through gas phase induced surface segregation: methanol synthesis from CO, CO2 and H2 over Ni/Cu(100)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We have studied the rate of methanol formation over Cu(100) and Ni/Cu(100) from various mixtures of CO, CO2 and H2. It is found that the presence of submonolayer quantities of Ni leads to a strong increase in the rate of methanol formation from mixtures containing all three components whereas Ni does not influence the rate from mixtures of CO2/H2 and CO/H2, respectively. The influence of the partial pressures of CO and CO2 on the rate indicates that the role of CO is strictly promoting. From temperature-programmed desorption spectra it follows that the surface concentration of Ni depends strongly on the partial pressure of CO. In this way the increase in reactivity is interpreted as a CO-induced structural promotion introduced by the stronger bonding of CO to Ni as compared to Cu. It is suggested that this type of promotional behavior will be of general importance in existent catalysts and perhaps even more relevant in the development of new or improved bimetallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.A. Somorjai, Surface Chemistry and Catalysis(Wiley, New York, 1994).

    Google Scholar 

  2. W.H. Sachtler and R. van Santen, Adv. Catal. 26 (1977) 69.

    CAS  Google Scholar 

  3. V. Ponec, Adv. Catal. 32 (1983) 149.

    Article  CAS  Google Scholar 

  4. J.H. Sinfelt, Bimetallic Catalysts(Wiley, New York, 1983).

    Google Scholar 

  5. L.P. Nielsen, F. Besenbacher, I. Stensgaard, E. Lægsgaard, C. Engdahl, P. Stoltze, K.W. Jacobsen and J.K. Nørskov, Phys. Rev. Lett. 71 (1993) 754.

    Article  CAS  Google Scholar 

  6. P.M. Holmblad, J.H. Larsen and I. Chorkendorff, J. Chem. Phys. 104 (1996) 7289.

    Article  CAS  Google Scholar 

  7. P.M. Holmblad, J.H. Larsen, I. Chorkendorff, L.P. Nielsen, F. Besenbacher, I. Stensgaard, E. Lægsgaard, P. Kratzer, B. Hammer and J.K. Nørskov, Catal. Lett. 40 (1996) 131.

    Article  CAS  Google Scholar 

  8. F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A. Molenbroek, J.K. Nørskov and I. Stensgaard, Science 279 (1998) 1913.

    Article  CAS  Google Scholar 

  9. DK patent application 0683/97 (1997).

  10. A. Christensen, A.V. Ruban, P. Stoltze, K.W. Jacobsen, H.L. Skriver, J.K. Nørskov and F. Besenbacher, Phys. Rev. B 56 (1997) 5822.

    Article  CAS  Google Scholar 

  11. V. Ponec, Surf. Sci. 80 (1979) 352.

    Article  CAS  Google Scholar 

  12. D. Tomànek, S. Mukherjee, V. Kumar and K.H. Bennemann, Surf. Sci. 114 (1982) 11.

    Article  Google Scholar 

  13. K.Y. Yu, D.T. Ling and W.E. Spicer, J. Catal. 44 (1976) 373.

    Article  CAS  Google Scholar 

  14. A.V. Ruban, I.A. Abrikosov, D.Ya. Kats, D. Gorelikov, K.W. Jacobsenand H.L. Skriver, Phys. Rev. B 49 (1994) 11383.

    Article  CAS  Google Scholar 

  15. S. Quannasser, L.T. Wille and H. Dreyssé, Phys. Rev. B 55 (1997) 14245.

    Article  Google Scholar 

  16. P.B. Rasmussen, M. Kazuta and I. Chorkendorff, Surf. Sci. 318 (1994) 267.

    Article  CAS  Google Scholar 

  17. I. Chorkendorff and P.B. Rasmussen, Surf. Sci. 248 (1991) 35.

    Article  CAS  Google Scholar 

  18. J. Nerlov, J. Wambach and I. Chorkendorff, in preparation.

  19. J. Yoshihara and C.T. Campbell, J. Catal. 161 (1996) 776.

    Article  CAS  Google Scholar 

  20. B. Hernnäs, M. Karolewski, H. Tillborg, A. Nilsson and N. Mårtensson, Surf. Sci. 302 (1994) 64.

    Article  Google Scholar 

  21. D.R. Buytymowitz, J.R. Manning and M.E. Read, J. Phys. Chem. Ref. Data 2 (1973) 643.

    Article  Google Scholar 

  22. J. Wambach, G. Illing and H.-J. Freund, Chem. Phys. Lett. 184 (1991) 239.

    Article  CAS  Google Scholar 

  23. P.A. Taylor, P.B. Rasmussen, C.V. Ovesen, P. Stoltze and I. Chorkendorff, Surf. Sci. 261 (1992) 191.

    Article  CAS  Google Scholar 

  24. P.B. Rasmussen, P.M. Holmblad, T. Askgaard, C.V. Ovesen, P. Stoltze, J.K. Nørskov and I. Chorkendorff, Catal. Lett. 26 (1991) 373.

    Article  Google Scholar 

  25. M. Mavrikakis, L.B. Hansen, J.J. Mortensen, B. Hammer and J.K. Nørskov, Symposium Series, Am. Chem. Soc. to be published.

  26. T. Fujitani, I. Nakamura, T. Uchijima and J. Nakamura, Surf. Sci. 383 (1997) 285.

    Article  CAS  Google Scholar 

  27. B.S. Clausen, G. Steffensen, B. Fabius, J. Villadsen, R. Feidenhans'l and H. Topsøe, Topics Catal. 1 (1994) 367.

    Article  CAS  Google Scholar 

  28. M. Muhler, E. Törnqvist, L.P. Nielsen, B.S. Clausen and H. Topsøe, Catal. Lett. 25 (1994) 1.

    Article  CAS  Google Scholar 

  29. N.-Y. Topsøe and H. Topsøe, J. Mol. Catal. (1998), submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nerlov, J., Chorkendorff, I. Promotion through gas phase induced surface segregation: methanol synthesis from CO, CO2 and H2 over Ni/Cu(100). Catalysis Letters 54, 171–176 (1998). https://doi.org/10.1023/A:1019033517855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019033517855

Navigation