Skip to main content
Log in

On a vector q‐d algorithm

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Using the framework provided by Clifford algebras, we consider a non‐commutative quotient‐difference algorithm for obtaining the elements of a continued fraction corresponding to a given vector‐valued power series. We demonstrate that these elements are ratios of vectors, which may be calculated with the aid of a cross rule using only vector operations. For vector‐valued meromorphic functions we derive the asymptotic behaviour of these vectors, and hence of the continued fraction elements themselves. The behaviour of these elements is similar to that in the scalar case, while the vectors are linked with the residues of the given function. In the particular case of vector power series arising from matrix iteration the new algorithm amounts to a generalisation of the power method to sub‐dominant eigenvalues, and their eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.A. Baker Jr. and P.R. Graves-Morris, Padé Approximants, Encyclopedia of Mathematics and its Applications 59 (Cambridge University Press, Cambridge, 2nd ed., 1996).

    MATH  Google Scholar 

  2. E.R. Berlekamp, Algebraic Coding Theory (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  3. A. Cuyt and L. Wuytack, Nonlinear Methods in Numerical Analysis, Mathematics Studies 136 (North-Holland, Amsterdam, 1987).

    MATH  Google Scholar 

  4. P.R. Graves-Morris, Extrapolation methods for vector sequences, Numer. Math. 61 (1992) 475–487.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.R. Graves-Morris and C.D. Jenkins, Vector-valued rational interpolants III, Constr. Approx. 2 (1986) 263–289.

    Article  MATH  MathSciNet  Google Scholar 

  6. P.R. Graves-Morris and D.E. Roberts, From matrix to vector Padé approximants, J. Comput. Appl. Math. 51 (1994) 205–236.

    Article  MATH  MathSciNet  Google Scholar 

  7. P.R. Graves-Morris and D.E. Roberts, Problems and progress in vector Padé approximation, J. Comput. Appl. Math. 77 (1997) 173–200.

    Article  MATH  MathSciNet  Google Scholar 

  8. P.R. Graves-Morris and E.B. Saff, Row convergence theorems for generalised inverse vector-valued Padé approximants, J. Comput. Appl. Math. 23 (1988) 63–85.

    Article  MATH  MathSciNet  Google Scholar 

  9. P.R. Graves-Morris and E.B. Saff, An extension of a row convergence theorem for vector Padé approximants, J. Comput. Appl. Math. 34 (1991) 315–324.

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Henrici, Applied and Computational Complex Analysis, Vol. 1 (Wiley, New York, 1974).

    MATH  Google Scholar 

  11. P. Henrici, Applied and Computational Complex Analysis, Vol. 2 (Wiley, New York, 1977).

    MATH  Google Scholar 

  12. G.N. Hile and P. Lounesto, Matrix representations of Clifford algebras, Linear Algebra Appl. 128 (1990) 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory 15 (1969) 122–127.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.B. McLeod, A note on the ε-algorithm, Computing 7 (1972) 17–24.

    Article  MathSciNet  Google Scholar 

  15. I.R. Porteous, Clifford Algebras and the Classical Groups (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  16. M. Riesz, in: Clifford Numbers and Spinors, eds. E.F. Bolinder and P. Lounesto (Kluwer, 1993).

  17. D.E. Roberts, Clifford algebras and vector-valued rational forms I, Proc. Roy. Soc. London Ser. A 431 (1990) 285–300.

    Article  MATH  MathSciNet  Google Scholar 

  18. D.E. Roberts, Vector-valued rational forms, Found. Phys. 23 (1993) 1521–1533.

    Article  MathSciNet  Google Scholar 

  19. D.E. Roberts, Vector Padé approximants, Napier Report CAM 95-3 (1995).

  20. D.E. Roberts, Vector continued fraction algorithms, in: Clifford Algebras with Numeric and Symbolic Computations, eds. R. Ablamowicz et al. (Birkhäuser, Basel, 1996) pp. 111–119.

    Google Scholar 

  21. D.E. Roberts, On the convergence of rows of vector Padé approximants, J. Comput. Appl. Math. 70 (1996) 95–109.

    Article  MATH  MathSciNet  Google Scholar 

  22. D.E. Roberts, On a representation of vector continued fractions, Napier Report CAM 97-5 (1997).

  23. H. Rutishauser, Der Quotienten-Differenzen Algorithmus, Z. Angew. Math. Phys. 5 (1954) 233–251.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. Wynn, Continued fractions whose coefficients obey a non-commutative law of multiplication, Arch. Rational Mech. Anal. 12 (1963) 273–312.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, D. On a vector q‐d algorithm. Advances in Computational Mathematics 8, 193–219 (1998). https://doi.org/10.1023/A:1018944213562

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018944213562

Navigation