Skip to main content
Log in

Suppressed hydrogen chemisorption of zeolite encaged metal clusters: discrimination between theoretical models on the basis of Ru/NaY

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of thermal treatment and zeolite proton concentration on the chemical state and metal particle size of zeolite Y supported ruthenium (3.0 wt%) have been investigated using H2-TPR, H2-TPD, TPMS, FTIR, TEM, and EXAFS. Heating in Ar of the precursor after ion exchange, [Ru(NH3)6]3+/NaY, up to 400°C leads to nearly 100% autoreduction of the ruthenium, as evidenced by H2-TPR and TPMS. Heating in O2 results in the formation of volatile ruthenium oxides. After autoreduction, the Ru clusters are extremely small, their coordination numbers, derived from EXAFS, are 0.6 for Ru/HY and 0.8 for Ru/NaY. Subsequent treatment at 500°C in flowing H2 induces Ru agglomeration to particles which are about the size of the zeolite Y supercages, as indicated by TEM and EXAFS. The Ru-Ru distances are contracted compared to bulk Ru metal. Washing of autoreduced Ru/NaY with NaOH, thus removing the protons formed during autoreduction, results in Ru agglomeration to large particles (60-100 Å). Comparison of the hydrogen adsorption of Ru clusters with similar sizes of 10-15 Å reveals a marked interaction of the Ru clusters with zeolite protons. Increasing the H+/Ru ratio from 3 for Ru/NaY to 10 for Ru/HY, results in a suppression of hydrogen chemisorption per Ru atom by 75%. The conclusion that formation of metal-proton adducts affects the electronic structure of the Ru clusters, thus being one of the main causes of the lowering of the heat of hydrogen chemisorption, is supported by FTIR data of adsorbed CO. The most pronounced C-O vibration band in Ru/HY is located at 2099 cm-1; this band is absent in Ru/NaY. Significant blue-shifting of the IR bands is in conformity with electron-deficiency of the Ru clusters in Ru/HY. The results confirm that adsorptive properties of zeolite encaged metal clusters can be "tuned" by other ions sharing the same cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xu, Z. Zhang and W.M.H. Sachtler, J. Chem. Soc. Faraday Trans. 88 (1992) 2291.

    Article  CAS  Google Scholar 

  2. D.C. Tomczak, G.-D. Lei, V. Schünemann, H. Treviño and W.M.H. Sachtler, Microporous Mater. 5 (1996) 263.

    Article  CAS  Google Scholar 

  3. P.Gallezot and B. Imelik, Adv. Chem. Ser. 121 (1973) 66.

    Article  Google Scholar 

  4. A.L. Yakovlev, G.M. Zhidomirov, K.M. Neyman, V.A. Nasluzov and N. Rösch, Ber. Bunsenges. Phys. Chem. 100 (1996) 1.

    Google Scholar 

  5. A.L. Yakovlev, K.M. Neyman, G.M. Zhidomirov and N. Rösch, J. Phys. Chem. E, in press.

  6. H.T. Wang, Y.W. Chen and J.G. Goodwin Jr., Zeolites 4 (1984) 56.

    Article  CAS  Google Scholar 

  7. T.P. Kobylinski, B.W. Taylor and J. Young, Trans. Soc. Auto. Eng. 83 (1974) 1089.

    Google Scholar 

  8. D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1984).

    Google Scholar 

  9. J.G. Goodwin Jr. and C. Naccache, J. Catal. 64 (1980) 482.

    Article  CAS  Google Scholar 

  10. L.A. Pederson and J.H. Lunsford, J.Catal. 61 (1980) 39.

    Article  Google Scholar 

  11. T. Mizushima, K. Tohji, Y. Udagawa and A. Ueno, J. Phys. Chem. 94 (1990) 4980.

    Article  CAS  Google Scholar 

  12. M.C.S. Sierra, J.G. Ruiz, M.G. Proietti and J. Blasco, J. Mol. Catal.A96 (1995) 65.

    Article  Google Scholar 

  13. A. Balerna, E. Bernieri, P. Picozzi, A. Reale, S. Santucci, E. Burattini and S.Mobilio, Phys. Rev. B 31 (1985) 5058.

    Article  CAS  Google Scholar 

  14. P.A. Montano, W. Schulze, B. Tesche, G.K. Shenoy, T.I. Morrison, Phys. Rev. B 30 (1984) 672.

    Article  CAS  Google Scholar 

  15. B. Moraweck and A. Renouprez, J. Surf. Sci. 106 (1981) 35.

    Article  CAS  Google Scholar 

  16. G. Apai, J.F. Hamilton, J. Stohr and A. Thompson, Phys. Rev. Lett. 43 (1979) 165.

    Article  CAS  Google Scholar 

  17. A. Goursot, L. Pedocchi and B. Coq, J. Phys. Chem. 98 (1994) 8747.

    Article  CAS  Google Scholar 

  18. L. Brewer, Chem. Rev. 52 (1953) 1.

    Article  CAS  Google Scholar 

  19. K.S. Kimand N. Winograd, J. Catal. 35 (1974) 66.

    Article  Google Scholar 

  20. R.A. Della Betta and M. Boudart, in: Proc. 5th Int. Congr. on Catalysis, Palm Beach 1972, ed. H. Hightower (North-Holland, Amsterdam, 1973) p. 1329.

  21. X.L. Bai and W.M.H. Sachtler, J. Catal. 129 (1991) 121.

    Article  CAS  Google Scholar 

  22. W.M.H. Sachtler and A.Y. Stakheev, Catal. Today 12 (1992) 283.

    Article  CAS  Google Scholar 

  23. A. Zecchina and E. Guglielminotti, J.Catal. 74 (1982) 225.

    Article  CAS  Google Scholar 

  24. S. Uchiyama and B.C. Gates, J. Catal. 110 (1988) 338.

    Article  Google Scholar 

  25. F. Solymosi and J. Raskó, J. Catal. 115 (1989) 107.

    Article  CAS  Google Scholar 

  26. V.L. Kuznetsov, A.T. Bell and Y. Yermakov, J. Catal. 65 (1980) 374.

    Article  CAS  Google Scholar 

  27. R.A. Dalla Betta, J. Phys. Chem. 79 (1975) 2519.

    Article  CAS  Google Scholar 

  28. H. Chen, Z. Zhong and J.M. White, J. Catal. 90 (1984) 119.

    Article  CAS  Google Scholar 

  29. L.L. Sheu, H. Knözinger and W.M.H. Sachtler, J. Am. Chem. Soc. 111 (1989) 8125.

    Article  CAS  Google Scholar 

  30. T.T.T. Wong, A.Y. Stakheev and W.M.H. Sachtler, J. Phys. Chem. 96 (1992) 1733.

    Article  Google Scholar 

  31. W.M.H. Sachtler, in: Handbook of Catalysis, eds. G. Ertl, H. Knözinger and J. Weitkamp (Verlag Chemie, Weinheim) ch. 1.2.3.4, in press.

  32. S.G. Kazarian, P.A. Hamley, M. Poliakof, J. Am. Chem. Soc. 115 (1993) 9069.

    Article  CAS  Google Scholar 

  33. I.C.M. Wehman-Ooyevaar, D.M. Grove, P. de Vaal, A. Dedieu, G. van Koten, Inorg. Chem. 31 (1992) 5484.

    Article  CAS  Google Scholar 

  34. I.C.M. Wehman-Ooyevaar, D.M. Grove, H. Kooijman, P. van der Sluis, A.L. Spek and G. van Koten, J. Am. Chem. Soc. 114 (1992) 9916.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, T., Marques, C., Treviño, H. et al. Suppressed hydrogen chemisorption of zeolite encaged metal clusters: discrimination between theoretical models on the basis of Ru/NaY. Catalysis Letters 43, 11–18 (1997). https://doi.org/10.1023/A:1018942623229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018942623229

Keywords

Navigation