Skip to main content
Log in

Roles of Hepatocyte Growth Factor/Scatter Factor and Transforming Growth Factor-β1 in Mammary Gland Ductal Morphogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal interactions areresponsible for the unique pattern of ductal branchingmorphogenesis characteristic of the mammary gland. Toinvestigate the factors which control the elongation and branching of lactiferous ducts, wedeveloped an in vitro model of ductal morphogenesis inwhich clonal mouse mammary epithelial cells (TAC-2cells) are grown in collagen gels. In this experimentalsystem, fibroblast conditioned medium (CM)3stimulates the formation of extensively arborizedtubules. The molecule responsible for this tubulogeniceffect was identified as hepatocyte growthfactor/scatter factor (HGF/SF). To determine whether HGF/SF plays arole in mammary gland morphogenesis in vivo, theexpression of HGF/SF and its receptor, cMet, wereanalyzed in the rat mammary gland during pregnancy,lactation, and involution. Levels of HGF/SF and c-Mettranscripts were progressively reduced during pregnancy,were virtually undetectable during lactation, andincreased again during involution. Collectively, these in vitro and in vivo findings suggest thatHGF/SF is a paracrine mediator of mammary gland ductalmorphogenesis. We subsequently investigated the effectof another multifunctional cytokine, namely TGF-beta1, on branching morphogenesis of TAC-2 cells.TGF-β1 had a striking biphasic effect:whereas relatively high concentrations of this cytokineinhibited colony formation, lower concentrationsstimulated extensive elongation and branching of epithelial cords.Taken together, these studies indicate that HGF/SF is astromal-derived paracrine mediator of mammary ductalmorphogenesis, and that when present at lowconcentrations, TGF-β1 can contribute to thisprocess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. W. Daniel and G. B. Silberstein. (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland. Development, Regulation and Function Plenum Press, New York and London, pp. 3-36.

    Google Scholar 

  2. F. Borellini and T. Oka (1989). Growth control and differentiation in mammary epithelial cells. Environ. Health Perspect. 80: 85-99.

    Google Scholar 

  3. T. Sakakura (1991). New aspects of stroma-parenchyma relations in mammary gland differentiation. Int. Rev. Cytol. 125: 165-202.

    Google Scholar 

  4. S. Z. Haslam (1991). Stromal-epithelial interactions in normal and neoplastic mammary gland. In M. Lippman and R. Dickson (eds.), Regulatory Mechanisms in Breast Cancer Kluwer Academic Publishers, Boston, pp. 401-420.

    Google Scholar 

  5. G. R. Cunha and Y. K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1: 21-35.

    Google Scholar 

  6. T. Woodward, J. Xie, and S. Z. Haslam (1998). The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J. Mam. Gland Biol. Neoplasia 3: 117-132.

    Google Scholar 

  7. Y. J. Topper and S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60: 1049-1106.

    Google Scholar 

  8. W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulation of mammary epithelial cell growth in mice and rats. Endocrine Rev. 11: 494-523.

    Google Scholar 

  9. K. Kratochwil (1969). Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland in the mouse. Devel. Biol. 20: 46-71.

    Google Scholar 

  10. M. H. Barcellos-Hoff, J. Aggeler, and M. J. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105: 223-235.

    Google Scholar 

  11. C. H. Streuli and M. J. Bissell (1990). Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110: 1405-1415.

    Google Scholar 

  12. J. Aggeler, J. Ward, L. M. Blackie, M. H. Barcellos Hoff, C. H. Streuli, and M. J. Bissell (1991). Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J. Cell Sci. 99: 407-417.

    Google Scholar 

  13. M. C. Neville, L. Stahl, A. Brozo, and J. Lowe-Lieber (1991). Morphogenesis and secretory activity of mouse mammary cultures on EHS biomatrix. Protoplasma 163: 1-8.

    Google Scholar 

  14. C. H. Streuli, N. Bailey, and M. J. Bissell (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J. Cell Biol. 115: 1383-1395.

    Google Scholar 

  15. J. Yang, J. Richards, R. Guzman, W. Imagawa, and S. Nandi (1980). Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. U.S.A. 77: 2088-2092.

    Google Scholar 

  16. D. C. Bennett (1980). Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature 285: 657-659.

    Google Scholar 

  17. E. J. Ormerod and P. S. Rudland (1982). Mammary gland morphogenesis in vitro: formation of branched tubules in collagen gels by a cloned rat mammary cell line. Devel. Biol. 91: 360-375.

    Google Scholar 

  18. K. G. Danielson, C. J. Oborn, E. M. Durban, J. S. Butel, and D. Medina (1984). Epithelial mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl. Acad. Sci. U.S.A. 81: 3756-3760.

    Google Scholar 

  19. I. Fialka, H. Schwarz, E. Reichmann, M. Oft, M. Busslinger, and H. Beug (1996). The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132: 1115-1132.

    Google Scholar 

  20. J. Enami, S. Enami, and M. Koga (1983). Growth of normal and neoplasic mouse mammary epithelial cells in primary culture: stimulation by conditioned medium from mouse mammary fibroblasts. Gann 74: 845-853.

    Google Scholar 

  21. T. Kanazawa and H. L. Hosick (1992). Transformed growth phenotype of mouse mammary epithelium in primary culture induced by specific fetal mesenchymes. J. Cell. Physiol. 153: 381-391.

    Google Scholar 

  22. R. B. Owens, H. S. Smith, and A. J. Hackett (1974). Epithelial cell cultures from normal glandular tissue of mice. J. Natl. Cancer Inst. 53: 261-269.

    Google Scholar 

  23. G. H. Hall, D. A. Farson, and M. J. Bissell (1982). Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. U.S.A. 79: 4672-4676.

    Google Scholar 

  24. G. David, B. Van der Schueren, and M. Bernfield (1981). Basal lamina formation by normal and transformed mouse mammary epithelial cells duplicated in vitro. J. Natl. Cancer Inst. 67: 719-724.

    Google Scholar 

  25. J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano (1995). Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108: 413-430.

    Google Scholar 

  26. E. Gherardi, J. Gray, M. Stoker, M. Perryman, and R. A Furlong (1989). Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc. Natl. Acad. Sci. U.S.A. 86: 5844-5848.

    Google Scholar 

  27. J. S. Rubin, A. M. Chan, D. P. Bottaro, W. H. Burgess, W. G. Taylor, A. C. Cech, D. W. Hirschfield, J. Wong, T. Miki, P. W. Finch, and S. A. Aaronson (1991). A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc. Natl. Acad. Sci. U.S.A. 88: 415-419.

    Google Scholar 

  28. R. Zarnegar and G. K. Michalopoulos (1995). The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J. Cell Biol. 129: 1177-1180.

    Google Scholar 

  29. E. M. Rosen, S. K. Nigam, and I. D. Goldberg (1994). Scatter factor and the c-Met receptor: a paradigm for mesenchymal/epithelial interaction. J Cell Biol. 127: 1783-1787.

    Google Scholar 

  30. K. Matsumoto and T. Nakamura (1996). Emerging multipotent aspects of hepatocyte growth factor. J. Biochem. (Tokyo) 119: 591-600.

    Google Scholar 

  31. L. Tamagnone and P. M. Comoglio (1997). Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 8: 129-142.

    Google Scholar 

  32. R. Montesano, G. Schaller, and L. Orci (1991). Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66: 697-711.

    Google Scholar 

  33. R. Montesano, K. Matsumoto, T. Nakamura, and L. Orci (1991). Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67: 901-908.

    Google Scholar 

  34. D. P. Bottaro, J. S. Rubin, D. L. Faletto, A. M. Chan, T. E. Kmiecik, G. F. Vande Woude, and S. A. Aaronson (1991). Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science 251: 802-804.

    Google Scholar 

  35. L. Naldini, E. Vigna, R. P. Narsimhan, G. Gaudino, R. Zarnegar, G. K. Michalopoulos, and P. M. Comoglio (1991). Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6: 501-504.

    Google Scholar 

  36. K. M. Weidner, M. Sachs, and W. Birchmeier (1993). The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J. Cell Biol. 121: 145-154.

    Google Scholar 

  37. H. Zhu, M. A. Naujokas, E. D. Fixman, K. Torossian, and M. Park (1994). Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J. Biol. Chem. 269: 29943-29948.

    Google Scholar 

  38. I. Royal, T. M. Fournier, and M. Park. (1997). Differential requirement of Grb2 and PI3-kinase in HGF/SF-induced cell motility and tubulogenesis. J. Cell. Physiol. 173: 196-201.

    Google Scholar 

  39. K. M. Weidner, S. Di Cesare, M. Sachs, V. Brinkmann, J. Behrens, and W. Birchmeier (1996). Interaction between Gab1 and the c-Met tyrosine kinase is responsible for epithelial morphogenesis. Nature 384: 173-176.

    Google Scholar 

  40. K. S. Zettl, M. D. Sjaastad, P. M. Riskin, G. Parry, T. E. Machen, and G. L. Firestone (1992). Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 89: 9069-9073.

    Google Scholar 

  41. M. D. Sjaastad, K. S. Zettl, G. Parry, G. L. Firestone, and T. E. Machen (1993). Hormonal regulation of the polarized function and distribution of Na/H exchange and Na/HCO3 cotransport in cultured mammary epithelial cells. J. Cell Biol. 122: 589-600.

    Google Scholar 

  42. A. A. Donjacour and G. R. Cunha (1990). Stromal regulation of epithelial function. In M. Lippman and R. Dickson (eds.), Regulatory Mechanisms in Breast Cancer Kluwer Academic Publishers, Boston, pp. 335-364.

    Google Scholar 

  43. F. Berdichevsky, D. Alford, B. D'Souza, and J. Taylor-Papadimitriou (1994). Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107: 3557-3568.

    Google Scholar 

  44. B. Niranjan, L. Buluwela, J. Yant, A. Atherton, D. Phippard, B. A. Gusterson, and T. Kamalati (1995). HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121: 2897-2908.

    Google Scholar 

  45. Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131: 215-226.

    Google Scholar 

  46. E. U. Saelman, P. J. Keely, and S. A. Santoro (1995). Loss of MDCK cell alpha 2 beta 1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J. Cell Sci. 108: 3531-3540.

    Google Scholar 

  47. A. L. Pollack, A. I. M. Barth, Y. Altschuler, W. J. Nelson, and K. E. Mostov (1997). Dynamics of β-catenin interactions with APC protein regulate epithelial tubulogenesis. J. Cell Biol. 137: 1651-1662.

    Google Scholar 

  48. M. S. Pepper, K. Matsumoto, T. Nakamura, L. Orci, and R. Montesano (1992). Hepatocyte growth factor increases urokinase-type plasminogen activator (u-PA) and u-PA receptor expression in Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 267: 20493-20496.

    Google Scholar 

  49. S. E. Dunsmore, J. S. Rubin, S. O. Kovacs, M. Chedid, W. C. Parks, and H. G. Welgus (1996). Mechanisms of hepatocyte growth factor stimulation of keratinocyte metalloproteinase production. J. Biol. Chem. 271: 24576-24582.

    Google Scholar 

  50. M. Jeffers, S. Rong, and G. F. Vande Woude (1996). Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signaling in human cells concomitant with induction of the urokinase proteolysis network. Mol. Cell. Biol. 16: 1115-1125.

    Google Scholar 

  51. M. E. Zeigler, N. T. Dutcheshen, D. F. Gibbs, and J. Varani (1996). Growth factor-induced epidermal invasion of the dermis in human skin organ culture: expression and role of matrix metalloproteinases. Invasion Metastasis 16: 11-18.

    Google Scholar 

  52. M. S. Pepper, J. V. Soriano, P. A. Menoud, A. P. Sappino, L. Orci, and R. Montesano (1995). Modulation of hepatocyte growth factor and c-Met in the rat mammary gland during pregnancy, lactation, and involution. Exp. Cell Res. 219: 204-210.

    Google Scholar 

  53. L. Ossowski, D. Biegel, and E. Reich (1979). Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 16: 929-940.

    Google Scholar 

  54. C. J. Sympson, R. S. Talhouk, C. M. Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125: 681-693.

    Google Scholar 

  55. M. Peaker (1978). Ion and water transport in the mammary gland. In B. L. Larson (ed.) Lactation. A Comprehensive Treatise. Volume IV, Academic Press, Inc., New York and London, pp. 437-462.

    Google Scholar 

  56. A. Nusrat, C. A. Parkos, A. E. Bacarra, P. J. Godowski, C. Delp Archer, E. M. Rosen, and J. L. Madara (1994). Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-Met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J. Clin. Invest. 93: 2056-2065.

    Google Scholar 

  57. A. B. Tuck, M. Park, E. E. Sterns, A. Boag, and B. E. Elliot (1996). Coexpression of hepatocyte growth factor and receptor (met) in human breast carcinoma. Am. J. Pathol. 148: 225-232.

    Google Scholar 

  58. L. Jin, A. Fuchs, S. J. Schnitt, Y. Yao, J. Ansamma, K. Lamszus, M. Park, I. D. Goldberg, and E. M. Rosen (1997). Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79: 749-760.

    Google Scholar 

  59. Y. Wang, A. C. Selden, N. Morgan, G. W. Stamp, and H. J. Hodgson (1994). Hepatocyte growth factor/scatter factor expression in human mammary epithelium. Am. J. Pathol. 144: 675-682.

    Google Scholar 

  60. N. Rahimi, E. Tremblay, L. McAdam, M. Park, R. Schwall, and B. Elliott (1996). Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ. 7: 263-270.

    Google Scholar 

  61. H. Takayama, W. J. LaRochelle, R. Sharp, T. Otsuka, P. Kriebel, M. Anver, S. A. Aaronson, and G. Merlino (1997). Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. U.S.A. 94: 701-706.

    Google Scholar 

  62. T. J. Liang, A. E. Reid, R. Xavier, R. D. Cardiff, and T. C. Wang (1996). Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97: 2872-2877.

    Google Scholar 

  63. Y. Yao, L. Jin, A. Fuchs, A. Joseph, H. M. Hastings, I. D. Goldberg, and E. M. Rosen (1996). Scatter factor protein levels in human breast cancers: clinicopathologi cal and biological correlations. Am. J. Pathol. 149: 1707-1717.

    Google Scholar 

  64. J. Nagy, G. W. Curry, K. J. Hillan, I. C. McKay, E. Mallon, A. D. Purushotham, and W. D. George (1996). Hepatocyte growth factor/scatter factor expression and c-met in primary breast cancer. Surg. Oncol. 5: 15-21.

    Google Scholar 

  65. J. Yamashita, M. Ogawa, S. Yamashita, K. Nomura, M. Kuramoto, T. Saishoji, and S. Shin (1994). Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res. 54: 1630-1633.

    Google Scholar 

  66. J. A. Barnard, R. M. Lyons, and H. L. Moses (1990). The cell biology of transforming growth factor-β. Biochim. Biophys. Acta 1032: 79-87.

    Google Scholar 

  67. J. Massagué (1990). The transforming growth factor-βfamily. Ann. Rev. Cell Biol. 6: 597-641.

    Google Scholar 

  68. A. B. Roberts and M. B. Sporn (1990). The transforming growth factor-βs. In M. B. Sporn and A. B. Roberts (eds.), Peptide Growth Factors and Their Receptors (Vol. I), Springer-Verlag, Berlin, pp. 419-472.

    Google Scholar 

  69. L. Attisano, J. L. Wrana, F. Lopez Casillas, and J. Massagué (1994). TGF-βreceptors and actions. Biochim. Biophys. Acta 1222: 71-80.

    Google Scholar 

  70. J. Massagué and K. Polyak (1995). Mammalian antiproliferative signals and their targets. Curr.Opin. Genet. Devel. 5: 91-96.

    Google Scholar 

  71. D. A. Lawrence (1996). Transforming growth factor-β: a general review. Eur. Cytokine Netw. 7: 363-374.

    Google Scholar 

  72. J. Plouet and D. Gospodarowicz (1989). Transforming growth factor-β1, positively modulates the bioactivity of fibroblast growth factor on corneal endothelial cells. J. Cell. Physiol. 141: 392-399.

    Google Scholar 

  73. E. J. Battegay, E. W. Raines, R. A. Seifert, D. F. Bowen Pope, and R. Ross (1990). TGF-βinduces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515-524.

    Google Scholar 

  74. Y. Myoken, M. Kan, G. H. Sato, W. L. McKeehan, and J. D. Sato (1990). Bifunctional effects of transforming growth factor-β (TGF-β) on endothelial cell growth correlate with phenotypes of TGF-βbinding sites. Exp. Cell Res. 191: 299-304.

    Google Scholar 

  75. M. S. Pepper, J. D. Vassalli, L. Orci, and R. Montesano (1993). Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp. Cell Res. 204: 356-363.

    Google Scholar 

  76. P. J. Miettinen, R. Ebner, A. R. Lopez, and R. Derynck (1994). TGF-βinduced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127: 2021-2036.

    Google Scholar 

  77. C. Nathan and M. Sporn (1991). Cytokines in context. J. Cell Biol. 113: 981-986.

    Google Scholar 

  78. Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit involution and progammed cell death in the mouse mammary gland. J. Cell Biol. 131: 1095-1103.

    Google Scholar 

  79. G. R. Merlo, F. Basolo, L. Fiore, L. Duboc, and N. E. Hynes (1995). p53-dependent and p53-independent activation of apoptosis in mammary epithelial cells reveals a survival function of EGF and insulin. J. Cell Biol. 128: 1185-1196.

    Google Scholar 

  80. J. V. Soriano, L. Orci, and R. Montesano (1996). TGF-β1 induces morphogenesis of branching cords by cloned mammary epithelial cells at subpicomolar concentrations. Biochem. Biophys. Res. Commun. 220: 879-885.

    Google Scholar 

  81. J. A. Madri, B. M. Pratt, and A. M. Tucker (1988). Phenotypic modulation of endothelial cells by transforming growth factor-βdepends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106: 1375-1384.

    Google Scholar 

  82. R. Montesano and L. Orci (1988). Transforming growth factor β stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc. Natl. Acad. Sci. U.S.A. 85: 4894-4897.

    Google Scholar 

  83. S. Rasmussen and A. Rapraeger (1988). Altered structure of the hybrid cell surface proteoglycan of mammary epithelial cells in response to transforming growth factor-β. J. Cell Biol. 107: 1959-1967.

    Google Scholar 

  84. M. Hosobuchi and M. R. Stampfer (1989). Effects of transforming growth factor-β on growth of human mammary epithelial cells in culture. In Vitro Cell. Devel. Biol. 25: 705-713.

    Google Scholar 

  85. K. Takahashi, K. Suzuki, and T. Ono (1990). Loss of growth inhibitory activity of TGF-β toward normal human mammary epithelial cells grown within collagen gel matrix. Biochem. Biophys. Res. Commun. 173: 1239-1247.

    Google Scholar 

  86. P. Martikainen, N. Kyprianou, and J. T. Isaacs (1990). Effect of transforming growth factor-β1 on proliferation and death of rat prostatic cells. Endocrinology 127: 2963-2968.

    Google Scholar 

  87. S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mammary gland development. Development 113: 867-878.

    Google Scholar 

  88. G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β1. Devel. Biol. 152: 354-362.

    Google Scholar 

  89. G. B. Silberstein and C.W. Daniel (1987). Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237: 291-293.

    Google Scholar 

  90. C. W. Daniel, G. B. Silberstein, K. Van Horn, P. Strickland, and S. Robinson (1989). TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Devel. Biol. 135: 20-30.

    Google Scholar 

  91. D. F. Pierce, Jr., M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold, A. F. Purchio, C. W. Daniel, B. L. M. Hogan, and H. L. Moses (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Devel. 7: 2308-2317.

    Google Scholar 

  92. C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen, A. B. Roberts, G. H. Smith, and G. Merlino (1993). Targeting expression of a transforming growth factor-β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12: 1835-1845.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soriano, J.V., Pepper, M.S., Orci, L. et al. Roles of Hepatocyte Growth Factor/Scatter Factor and Transforming Growth Factor-β1 in Mammary Gland Ductal Morphogenesis. J Mammary Gland Biol Neoplasia 3, 133–150 (1998). https://doi.org/10.1023/A:1018790705727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018790705727

Navigation